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Rate-distortion problem formulation

Un

V n

sn

Ûn

QU,V |S

Encoder Decoder

QU,V |S – Memoryless Wyner-Ziv source with state variable s, (AV-WZ).

sn - Arbitrarily varying state sequence, known non-causally at the

encoder.

V n - Decoder side information.

We are interested in the (deterministic) rate-distortion function, R(D).
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Rate-distortion problem formulation (cont’d)

Notation and assumptions:

Finite alphabets U , V, S.

Memoryless source

Q(un
, v

n|sn) =

n
Y

i=1

Q(ui, vi|si)

The distortion between source sequence un and reproduction sequence
ûn is measured by

d(un
, û

n) =
1

n

n
X

i=1

d(ui, ûi)

where Û is the reproduction alphabet, and d(ui, ûi) is a bounded
distortion measure:

max
u∈U ,û∈Û

d(u, û) ≤ Dmax.
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Rate-distortion problem formulation (cont’d)

A (2nR, n, D) deterministic code for the AV-WZ source is a pair of maps (f, φ)

f : Un × Sn →
n

1, 2, . . . , 2nR
o

φ :
n

1, 2, . . . , 2nR
o

× Vn → Un

such that

D ≥ max
q∈P(Sn)

X

sn,un,vn

q(sn)Q(un
, v

n|sn)d(un
, φ(f(un

, s
n), vn))

The rate of the code is R.

A rate R is achievable with distortion D if for any γ > 0 and sufficiently large n,
there exists an (2nR, n, D + γ) deterministic code for the AV-WZ source.

The rate-distortion function R(D) is the infimum over all achievable rates.
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Rate-distortion problem formulation (cont’d)

Correlated, randomized-encoder and deterministic rate-d istortion codes

Deterministic rate-distortion code:
Deterministic encoder: i = f(un, sn)

Deterministic decoder: ûn = ϕ(i, vn)

Average distortion:

D(sn) =
P

un,vn Q(un, vn|sn)d(un, ϕ(f(un, sn), vn))

Miss represented set:

∆(sn) ,
˘

(un, vn) ∈ Un × Vn : d(un, ϕ(f(un, sn), vn)) > D + δ
¯

.

Randomized-encoder rate-distortion code:
Probabilistic encoder: P (i|un, sn)

Deterministic decoder: ûn = ϕ(i, vn)

Average distortion:

D(sn) =
P

un,vn

P

i Q(un, vn|sn)P (i|un, sn)d(un, ϕ(i, vn))
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Rate-distortion problem formulation (cont’d)

Correlated, randomized-encoder and deterministic rate-d istortion codes (cont’d)

Correlated rate-distortion code:

Collection of deterministic codes: {(fγ , ϕγ)}γ∈Γ

Probability distribution on the codes collection Γ: µ

Average distortion:

D(sn) =
X

γ

µ(γ)
X

un,vv

Q(un
, v

n|sn)d(un
, ϕ

γ(fγ(un
, s

n), vn)).
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Previous work

Wyner & Ziv, 1976 – Source with side information at the decoder

R(D) = min
M(D)

[I(Z; U) − I(Z; V )],

M(D) – All RVs {U, V, Z, Û} with probability distribution

Q(U, V )PZ|UP
Û |Z,V

, such that Ed(U, Û) ≤ D.

Gel’fand & Pinsker, 1980 – Capacity formula for channel with random

parameters and non-causal CSIT

C = max
PU,X|S

[I(U ; Y ) − I(U ; S)], U−◦ (X,S)−◦ Y.
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Previous work (cont’d)

Ahlswede’s elimination technique ,1978 – An AVC deterministic code

capacity either equals its correlated code capacity or else is zero (in the

absence of side information and constraints).

Only polynomial (in blocklength) large codes collection is needed.

Ahlswede, 1986 – Positivity and capacity for an AVC with non-causal

CSIT

Separation Lemma – Deterministic code capacity is positive iff for

every state s the DMC w(y|x, s) has positive capacity.

If the deterministic code capacity is positive C = minq Cq.

Achievability in three steps:

1. Extension of Gel’fand & Pinsker to a compound channel

2. Correlated code capacity equals compound channel capacity

3. Deterministic code capacity equals correlated code capacity
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AV-WZ rate-distortion function

Q(U, V |S) – AV-WZ source, sn is known at the encoder.

q(·) – An arbitrary probability on the state space S.

Rq(D) – Rate-distortion of Q(U, V |S) with random parameters with

probability q (Wyner-Ziv, 1976).

R
q(D) = min[I(Z; S, U) − I(Z; V )]

where the minimum is over all PZ|U,S and functions ϕ : Z × V → Û such

that

IEd(U, Û) ≤ D.
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AV-WZ rate-distortion function – main result.

R
q(D) = min

PZ|U,S , ϕ:Z×V→Û
[I(Z; S, U) − I(Z; V )]

D ≥ IEd(U, Û).

Theorem :

The rate-distortion function of the discrete memoryless arbitrarily varying

Wyner-Ziv source, with state sequence sn known at the encoder, is given by:

R(D) = max
q

R
q(D)

– p. 11/25



Proof idea

Converse

If R < maxq Rq(D) is achievable, then there exists q′ such that R < Rq′

(D).

Averaging the distortion with respect to q′ , results in a contradiction to

Wyner-Ziv formula.

Achievability

Achievability of the rate-distortion is shown following Ahlswede 1986 ideas,

applied to the AV-WZ setting. Proof in three steps:

1. Rate-distortion for compound (in S) Wyner-Ziv source

2. Construction of correlated code for AV-WZ source (robustification

technique)

3. Reduction of correlation (common randomness) between encoder and

decoder (elimination technique)
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Proof idea (cont’d)

First step: Compound WZ source

State sequence is chosen i.i.d with unknown probability.

Key Idea: preassign to every state type t a code for state-dependent WZ

source, with state distribution t′, with good distortion performance

X

S(t,n)

Q(∆t′(sn)|sn) ≤ inf
q

X

S(t,n)

Q(∆q(sn)|sn) + e
−ǫn

Inform the decoder on the type by concatenating a type preamble to the

code.

Here ∆q(sn) stands for the miss represented set of a code (f, φ), that achieves

(R,D) for the WZ source with state distribution q.
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Proof idea (cont’d)

First step: Compound WZ source (cont’d)

The receiver selects the appropriate decoder according to the preamble.

The number of different types is only polynomial in blocklength.

Does not affect the overall rate.

Miss represented set has exponentially small probability:

Deterministic codes (can be shown to) have miss represented sets with

exponentially small probability.

The preamble has exponentially small error probability.
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Proof idea (cont’d)

Second step: Construction of a correlated code using the RT

Robustification Technique (Ahlswede, 1986)

g : sn → [0, 1]

π – a permutation function on Sn

If for every memoryless probability pn:

X

sn

p
n(sn)g(sn) ≤ α,

for some α > 0, then, for every sequence sn:

1

n!

X

π

g(πs
n) ≤ α(n + 1)|S|

.
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Proof idea (cont’d)

Second step: Construction of a correlated code using the RT ( cont’d)

(f, ϕ) - deterministic code for the compound WZ source

Applying the RT
Define the codes collection:

fπ(un, sn) = f(πun, πsn)

ϕπ(i, vn) = π−1ϕ(i, πvn).

The RT state that:

1

n!

X

π

Q(∆π(sn)|sn) ≤ α(n + 1)|S|

‘Random-permutation’ code has an exponentially small miss represented
set for every state sequence.

Problem: The number of codes in the collection is exponential with
blocklength. =⇒ Can not be transmitted to the decoder without affecting
the code rate!
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Proof idea (cont’d)

Third step: Elimination technique to rate-distortion

The randomness in the correlated code should not be exponentially large

‘only’ polynomial number with blocklength is needed.

Key idea – LD approach: An empirical average of i.i.d. variables deviates

from their mean with exponentially small probability, with the number of

variables.

Select at random only n2 codes out of the collection. The average miss

represented set satisfies:

P

8

<

:

max
sn

1

n2

n2

X

l=1

P (∆l(sn)) ≥ λ

9

=

;

≤ |S|ne
−λn2
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Proof idea (cont’d)

Third step: Elimination technique to rate-distortion (con t’d)

Random selection argument: there exist a correlated code with only n2

codes, with a fixed miss represented set probability.

Create a randomized-encoder code by adding a code index preamble.

A randomized-encoder code can not out perform a deterministic code.

A deterministic code achieves the rate-distortion.

The miss represented set probability is arbitrary small for sufficiently large

blocklength, rather than exponential with blocklength.
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Joint source-channel coding formulation

M M̂XN Y N

S̃N

Encoder DecoderChannel

w(y|x, s̃) – Memoryless Gel’fand-Pinsker channel with state variable s̃,

(AV-GP).

s̃n – State variables, arbitrarily varying, known non-causally at the

encoder (CSIT).

We denote the (deterministic code) capacity by C.
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Joint source-channel coding formulation (cont’d)

M M̂XN Y N

S̃N

Encoder DecoderChannel

A results by Ahlswede, 1986:
C = min

q
C

q

where Cq is the capacity of the classical memoryless Gel’fand-Pinsker channel
with state distribution q:

C
q = max

PU,X|S

[I(U ; Y ) − I(U ; S)].
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Joint source-channel coding formulation (cont’d)

Un

V n

Sn

ÛnXN Y N

S̃N

Encoder DecoderChannel

PU,V |S

An AV-WZ source is transmitted over an AV-GP channel.

sn and s̃N known non-causally at the encoder.

V n - Side information at the decoder.

We are interested in the minimal achievable distortion, for given

ρ =
n

N
=

ρs

ρc
.
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Previous work

Merhav & Shamai ,2003

Q(U, V |S) - WZ source with random parameters operate at a rate ρs

w(y|x, s̃) - GP channel with random parameters operate at a rate ρc

A distortion level D is achievable iff:

ρsR(D) ≤ ρcC(Γ).

No inherent loss by separating source coding from channel coding.
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Joint AV-WZ source and AV-GP channel

Q(u, v|s) – AV-WZ source, sn is known at the encoder.

R(D) – The source rate-distortion function.

The source operates at a rate of ρs symbols per second.

w(y|x, s) – AV-GP channel with (deterministic code) capacity C.

The channel operates at a rate of ρc channel uses per second.

Theorem :

A distortion level D is achievable iff:

ρsR(D) ≤ ρcC.
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Proof idea

Sufficient part

Shown by concatenating an optimal rate-distortion coding to an optimal

channel coding.

Necessary part

If an achievable distortion level D satisfies ρsR(D) > ρcC, then there exists q

and q′ such that ρsR
q(D) > ρcC

q′

.

Averaging the distortion with respect to q and q′ , results in a contradiction to

Merhav-Shamai theorem.
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Some observations:

The best strategy for the jammer is to choose the sequences sn and s̃N

in such a manner that the Wyner-Ziv source and the Gel’fand-Pinsker

channel look like independent of each other.

A separation principle applies also to the operation of the jammer: the

“best” jammer can be split into two non-cooperating jammers, one of

which controls only the source state, and the other controls only the

channel state, and none of them sees the state sequence of the other.
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