Coding for Channels with Rate-limited Side Information

Yossef Steinberg

Department of Electrical Engineering Technion—Israel Institute of Technology Haifa 32000, Israel

The 2006 Information Theory Workshop—ITW '06: Punta del Este, Uruguay, March 2006

Outline

- Problem formulation
- Motivation:
 - Communication Systems
 - Watermarking
- Previous work
- Main result
- Extensions and future work

Memoryless channel $P_{Y|X,S}(y|x,s)$ and state $P_S(s)$

- Memoryless channel $P_{Y|X,S}(y|x,s)$ and state $P_S(s)$
- State sequence S^n known a priori at the encoder

- Memoryless channel $P_{Y|X,S}(y|x,s)$ and state $P_S(s)$
- State sequence S^n known a priori at the encoder
- A compressed version of S^n , with rate(S^n) ≤ R_d , is provided to the decoder.

- Memoryless channel $P_{Y|X,S}(y|x,s)$ and state $P_S(s)$
- State sequence S^n known a priori at the encoder
- A compressed version of S^n , with rate(S^n) ≤ R_d , is provided to the decoder.

We are interested in the region of all achievable rates and input costs:

$$R = \frac{\log |\mathcal{M}|}{n}, \quad R_d = \frac{\log |\mathcal{T}|}{n}, \quad \Gamma = E\phi(X^n).$$

Motivation

Communication systems:

OFDM + coding, where coding is done across frequencies. The sender knows channels states (fading), and sends it via a wayside channel to the receiver.

Watermarking (WM) with compressed host at the decoder.

Public Watermarking – The host data S^n is available only at the encoder.

Public Watermarking – The host data S^n is available only at the encoder.

Private Watermarking – The host data S^n is available at both, encoder and decoder.

- **Public Watermarking** The host data S^n is available only at the encoder.
- Private Watermarking The host data S^n is available at both, encoder and decoder.
- A bridge between the versions [Moulin & O'Sullivan] A key K^n is present at the encoder and decoder, with a given $P_{S,K}$.

- **Public Watermarking** The host data S^n is available only at the encoder.
- Private Watermarking The host data S^n is available at both, encoder and decoder.
- A bridge between the versions [Moulin & O'Sullivan] A key K^n is present at the encoder and decoder, with a given $P_{S,K}$.
 - K^n is provided to the decoder at no cost

- **Public Watermarking** The host data S^n is available only at the encoder.
- Private Watermarking The host data S^n is available at both, encoder and decoder.
- A bridge between the versions [Moulin & O'Sullivan] A key K^n is present at the encoder and decoder, with a given $P_{S,K}$.
 - K^n is provided to the decoder at no cost
 - How to choose $P_{K|S}$?

- **Public Watermarking** The host data S^n is available only at the encoder.
- Private Watermarking The host data S^n is available at both, encoder and decoder.
- A bridge between the versions [Moulin & O'Sullivan] A key K^n is present at the encoder and decoder, with a given $P_{S,K}$.
 - K^n is provided to the decoder at no cost
 - How to choose $P_{K|S}$?

 \Rightarrow Quantify the deocder's a priori knowledge by a rate-limit

Problem:

Characterize the region of all achievable (R, R_d, D) , where:

- R Embedding rate,
- R_d rate of compressed SI @ decoder
- D distortion between host and input.

Related problems

- Sⁿ is known noncausally at the encoder \Rightarrow channel coding part is related to the Gel'fand-Pinsker (GP) problem.
- Yⁿ depends statistically on Sⁿ and can serve as side information (SI) in retrieving the compressed state at the decoder ⇒ coding of Sⁿ is related to the Wyner-Ziv (WZ) problem.

Related problems (cont'd)

- **•** For the WZ problem, the SI Y^n is not memoryless
- There is no distortion constraint in retrieving S^n at the decoder (instead, maximize capacity of the main channel)

Previous work

- Wyner & Ziv, 1976
- Gel'fand & Pinsker, 1980
- Heegard & El Gamal, 1983, "On the capacity of computer memory with defects." Introduced coding for state dependent channels with rate limited side information at both ends. Devised an achievable region.

The current model is a special case of Heegard & El Gamal's model.

Previous work (cont'd)

The Heegard & El Gamal model:

Heegard & El Gamal devised an achievable region, tight for the cases:

1.	$R_e = 0$,	$R_d = 0$	
2.	$R_e = H(S),$	$R_d = H(S Y)$	(both sides fully informed)
3.	$R_e = H(S),$	$R_d = 0$	(the GP model)
4.	R_e arbitrary,	$R_d = H(S Y)$	(rate-limited SI @ encoder, fully informed decoder).

Case 4 was treated also by Rosenzweig *et al*, 2005. Dual to the problem treated here.

Previous work (cont'd)

The Heegard & El Gamal model:

Case 4. R_e arbitrary, $R_d = H(S|Y)$ (rate-limited SI @ encoder, fully informed decoder).

 $R \leq I(X; Y|S, S_e)$ $R_e \geq I(S: S_e)$

for some S_e such that $X \oplus S_e \oplus S$ $S_e \oplus (S, X) \oplus Y$

Previous work (cont'd)

Works related to WM: (very partial list)

- Moulin & O'Sullivan, 2003 Introduced WM from IT viewpoint.
 Connection to GP. Bridging between public and private WM, via K^n .
- Willems & kalker, 2002 WM system without attack channel. Two new ingerdients:
 - The host S^n is reconstructed within distortion D_2 at the decoder
 - Composite rate limit: a rate limit is put on the data set Xⁿ.
 (Huffman code.)
- Maor & Merhav, 2005a, 2005b Extended Willems & kalker work: (a) general lossless codes, (b) attack channel.

Main result

 \mathcal{R}^* – collection of all (R, R_d, Γ) satisfying

$$R \leq I(U;Y|S_d) - I(U;S|S_d)$$
$$R_d \geq I(S;S_d) - I(Y;S_d)$$
$$\Gamma \geq \mathbb{E}\phi(X)$$

for some (U, S_d) such that $(U, S_d) \Leftrightarrow (S, X) \Leftrightarrow Y$. Then

Theorem: For any discrete memoryless state-dependent channel, with full noncausal SI at the transmitter, and rate-limited SI at the receiver, a triple (R, R_d, Γ) is achievable if and only if $(R, R_d, \Gamma) \in \mathcal{R}^*$.

Main result (cont'd)

 \mathcal{R}^* – collection of all (R, R_d, Γ) satisfying

$$R \leq I(U;Y|S_d) - I(U;S|S_d)$$
$$R_d \geq I(S;S_d) - I(Y;S_d)$$
$$\Gamma \geq \mathbb{E}\phi(X)$$

for some (U, S_d) such that $(U, S_d) \oplus (S, X) \oplus Y$.

- S_d A WZ rv, represents the compressed state S^n . Fully decoded, with Y^n as SI.
- U A GP rv, represents the encoded message. Fully decoded conditioned on S_d in both sides.

Main result (cont'd)

 \mathcal{R}^* – collection of all (R, R_d, Γ) satisfying

$$R \leq I(U; Y|S_d) - I(U; S|S_d)$$
$$R_d \geq I(S; S_d) - I(Y; S_d) (*)$$
$$\Gamma \geq \mathbb{E}\phi(X)$$

for some (U, S_d) such that $(U, S_d) \oplus (S, X) \oplus Y$.

$$R_d \ge I(S; S_d | Y),$$

full duality with GP.

In classical WZ, $S_d \oplus S \oplus Y$ is needed to guarantee joint typicality of S_d and Y. Here it is guaranteed due to the channel.

Main result (cont'd)

 \mathcal{R}^* – collection of all (R, R_d, Γ) satisfying

$$R \leq I(U;Y|S_d) - I(U;S|S_d)$$
$$R_d \geq I(S;S_d) - I(Y;S_d)$$
$$\Gamma \geq \mathbb{E}\phi(X)$$

for some (U, S_d) such that $(U, S_d) \Leftrightarrow (S, X) \Leftrightarrow Y$.

Properties of \mathcal{R}^*

- \checkmark \mathcal{R}^* is convex
- ▶ $X = f(U, S_d, S)$, f deterministic, suffices to exhaust \mathcal{R}^* .

A typical (R, R_d) curve

A typical (R, R_d) curve, for fixed Γ :

- The rate allocated to provide the decoder with SI, is always at least as high as the gain in the forward rate.
- Provide SI to the decoder when the wayside channel cannot be used to transmit data – e.g.
 - Remotely located physical channel
 - WM, where a compressed host is kept in memory at the decoder, for future use.

Future work

- Extensions to networks
 - MAC, BC, etc
 - Ad hoc networks. Part of the users are silent, and can transmit SI at low cost.
- Specific models. Coding schemes.
- Computational algorithms.