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Problem Formulation

DecoderChannelEncoder
m Xn Y n m̂
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Problem Formulation

State Encoder

DecoderChannelEncoder
Xn Y n

Rate ≤ Rd

m m̂

Sn

Memoryless channel PY |X,S(y|x, s) and state PS(s)

State sequence Sn known a priori at the encoder

A compressed version of Sn, with rate(Sn) ≤ Rd, is provided to the
decoder.

We are interested in the region of all achievable rates and input costs:

R =
log |M|

n
, Rd =

log |T |

n
, Γ = Eφ(Xn).
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Motivation

Communication systems:

OFDM + coding, where coding is done across frequencies. The sender

knows channels states (fading), and sends it via a wayside channel to the

receiver.

Watermarking (WM) with compressed host at the decoder.
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Motivation – WM (cont’d)

Encoder Channel Decoder
m

Sn

Y n m̂

PY |X

Xn

Ed(Sn, Xn) ≤ D

Public Watermarking – The host data Sn is available only at the encoder.
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Motivation – WM (cont’d)

Encoder Channel Decoder
m

Sn

Y n m̂

PY |X

Kn

Xn

Ed(Sn, Xn) ≤ D

Public Watermarking – The host data Sn is available only at the encoder.

Private Watermarking – The host data Sn is available at both, encoder
and decoder.

A bridge between the versions [Moulin & O’Sullivan] – A key Kn is
present at the encoder and decoder, with a given PS,K .

Kn is provided to the decoder at no cost

How to choose PK|S?

⇒ Quantify the deocder’s a priori knowledge by a rate-limit
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Motivation – WM (cont’d)

Encoder Channel Decoder

State Encoder

m m̂

PY |X

Sn

Rate ≤ Rd

Y n

Ed(Sn, Xn) ≤ D

Xn

Problem:

Characterize the region of all achievable (R, Rd, D), where:

R – Embedding rate,

Rd – rate of compressed SI @ decoder

D – distortion between host and input.
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Related problems

State Encoder

DecoderChannelEncoder
Xn Y n

Rate ≤ Rd

m m̂

Sn

Sn is known noncausally at the encoder ⇒ channel coding part is related

to the Gel’fand-Pinsker (GP) problem.

Y n depends statistically on Sn and can serve as side information (SI) in

retrieving the compressed state at the decoder ⇒ coding of Sn is related

to the Wyner-Ziv (WZ) problem.

– p. 7/19



Related problems (cont’d)

State Encoder

DecoderChannelEncoder

GP

WZ

Xn Y n

Rate ≤ Rd

m m̂

︷ ︸︸ ︷

︸ ︷︷ ︸

Sn

For the WZ problem, the SI Y n is not memoryless

There is no distortion constraint in retrieving Sn at the decoder (instead,
maximize capacity of the main channel)
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Previous work

Wyner & Ziv, 1976

Gel’fand & Pinsker, 1980

Heegard & El Gamal, 1983, "On the capacity of computer memory with

defects." Introduced coding for state dependent channels with rate limited

side information at both ends. Devised an achievable region.

The current model is a special case of Heegard & El Gamal’s model.
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Previous work (cont’d)

The Heegard & El Gamal model:

��
��
��
��

DecoderChannelEncoder

E
Descriptor

D
Descriptor

Xn Y nm m̂

Sn

Re Rd

Heegard & El Gamal devised an achievable region, tight for the cases:

1. Re = 0, Rd = 0

2. Re = H(S), Rd = H(S|Y ) (both sides fully informed)

3. Re = H(S), Rd = 0 (the GP model)

4. Re arbitrary, Rd = H(S|Y ) (rate-limited SI @ encoder,
fully informed decoder).

Case 4 was treated also by Rosenzweig et al , 2005. Dual to the problem
treated here.
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Previous work (cont’d)

The Heegard & El Gamal model:

��
��
��
��

DecoderChannelEncoder

E
Descriptor

D
Descriptor

Xn Y nm m̂

Sn

Re Rd

Case 4. Re arbitrary, Rd = H(S|Y ) (rate-limited SI @ encoder,
fully informed decoder).

R ≤ I(X; Y |S, Se)

Re ≥ I(S : Se)

for some Se such that X−◦ Se−◦ S Se−◦ (S, X)−◦ Y
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Previous work (cont’d)

Works related to WM: (very partial list)

Moulin & O’Sullivan, 2003 – Introduced WM from IT viewpoint.
Connection to GP. Bridging between public and private WM, via Kn.

Willems & kalker, 2002 – WM system without attack channel.
Two new ingerdients:

The host Sn is reconstructed within distortion D2 at the decoder

Composite rate limit : a rate limit is put on the data set Xn.
(Huffman code.)

Maor & Merhav, 2005a, 2005b – Extended Willems & kalker work:
(a) general lossless codes, (b) attack channel.
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Main result

R∗ – collection of all (R, Rd, Γ) satisfying

R ≤ I(U ; Y |Sd) − I(U ; S|Sd)

Rd ≥ I(S; Sd) − I(Y ; Sd)

Γ ≥ IEφ(X)

for some (U, Sd) such that (U, Sd)−◦ (S, X)−◦ Y . Then

Theorem: For any discrete memoryless state-dependent channel, with full

noncausal SI at the transmitter, and rate-limited SI at the receiver, a triple

(R, Rd, Γ) is achievable if and only if (R, Rd, Γ) ∈ R∗.
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Main result (cont’d)

R∗ – collection of all (R, Rd, Γ) satisfying

R ≤ I(U ; Y |Sd) − I(U ; S|Sd)

Rd ≥ I(S; Sd) − I(Y ; Sd)

Γ ≥ IEφ(X)

for some (U, Sd) such that (U, Sd)−◦ (S, X)−◦ Y .

Sd – A WZ rv, represents the compressed state Sn. Fully decoded, with
Y n as SI.

U – A GP rv, represents the encoded message. Fully decoded
conditioned on Sd in both sides.
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Main result (cont’d)

R∗ – collection of all (R, Rd, Γ) satisfying

R ≤ I(U ; Y |Sd) − I(U ; S|Sd)

Rd ≥ I(S; Sd) − I(Y ; Sd) (∗)

Γ ≥ IEφ(X)

for some (U, Sd) such that (U, Sd)−◦ (S, X)−◦ Y .

(U, Sd)−◦ (S, X)−◦ Y does not imply Sd−◦ S−◦ Y . Therefore (∗) is not
equivalent to

Rd ≥ I(S; Sd|Y ),

full duality with GP.

In classical WZ, Sd−◦ S−◦ Y is needed to guarantee joint typicality of Sd and
Y . Here it is guaranteed due to the channel.
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Main result (cont’d)

R∗ – collection of all (R, Rd, Γ) satisfying

R ≤ I(U ; Y |Sd) − I(U ; S|Sd)

Rd ≥ I(S; Sd) − I(Y ; Sd)

Γ ≥ IEφ(X)

for some (U, Sd) such that (U, Sd)−◦ (S, X)−◦ Y .

Properties of R∗

R∗ is convex

X = f(U, Sd, S), f deterministic, suffices to exhaust R∗.
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A typical (R, Rd) curve

A typical (R, Rd) curve, for fixed Γ:

RdH(S|Y )

(Gel’fand-Pinsker capacity

with Eφ(X) ≤ Γ)

max[I(U ; Y ) − I(U ; S)]

Slope ≤ 1

maxpx|s
I(X; Y |S)

R
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The rate allocated to provide the decoder with SI, is always at least as

high as the gain in the forward rate.

Provide SI to the decoder when the wayside channel cannot be used to

transmit data – e.g.

Remotely located physical channel

WM, where a compressed host is kept in memory at the decoder, for

future use.
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Future work

Extensions to networks

MAC, BC, etc

Ad hoc networks. Part of the users are silent, and can transmit SI at

low cost.

Specific models. Coding schemes.

Computational algorithms.
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