The Multiple Access Channel with Two Independent States each Known Causally to One Encoder

Amos Lapidoth and Yossef Steinberg

Problem Formulation: The MAC with strictly causal and causal independent SI

- Problem Formulation: The MAC with strictly causal and causal independent SI
- Background and related results:
 - The single user channel
 - Broadcast channels
 - MAC with common SI

- Problem Formulation: The MAC with strictly causal and causal independent SI
- Background and related results:
 - The single user channel
 - Broadcast channels
 - MAC with common SI
- An achievable region for the strictly causal model

- Problem Formulation: The MAC with strictly causal and causal independent SI
- Background and related results:
 - The single user channel
 - Broadcast channels
 - MAC with common SI
- An achievable region for the strictly causal model
- Example

- Problem Formulation: The MAC with strictly causal and causal independent SI
- Background and related results:
 - The single user channel
 - Broadcast channels
 - MAC with common SI
- An achievable region for the strictly causal model
- Example
- An achievable region for the causal model

- Problem Formulation: The MAC with strictly causal and causal independent SI
- Background and related results:
 - The single user channel
 - Broadcast channels
 - MAC with common SI
- An achievable region for the strictly causal model
- Example
- An achievable region for the causal model
- The naïve approach

- Problem Formulation: The MAC with strictly causal and causal independent SI
- Background and related results:
 - The single user channel
 - Broadcast channels
 - MAC with common SI
- An achievable region for the strictly causal model
- Example
- An achievable region for the causal model
- The naïve approach
- Example

MAC with strictly causal side information (SI):

MAC with strictly causal side information (SI):

• Two independent state sequences S_1^n , S_2^n each known to one encoder in a strictly causal manner:

$$X_{1,i} = f_{1,i}(m_1, S_1^{i-1}), \quad X_{2,i} = f_{2,i}(m_2, S_2^{i-1}), \quad i = 1, \dots, n$$

MAC with strictly causal side information (SI):

• Two independent state sequences S_1^n , S_2^n each known to one encoder in a strictly causal manner:

$$X_{1,i} = f_{1,i}(m_1, S_1^{i-1}), \quad X_{2,i} = f_{2,i}(m_2, S_2^{i-1}), \quad i = 1, \dots, n$$

$$(\hat{m}_1, \hat{m}_2) = g(Y^n)$$

• Two independent state sequences S_1^n , S_2^n each known to one encoder in a strictly causal manner:

$$X_{1,i} = f_{1,i}(m_1, S_1^{i-1}), \quad X_{2,i} = f_{2,i}(m_2, S_2^{i-1}), \quad i = 1, \dots, n$$

$$(\hat{m}_1, \hat{m}_2) = g(Y^n)$$

• Transmission is subject to input constraints $\frac{1}{n} \sum_{i=1}^{n} \phi_k(X_{k,i}) \leq \Gamma_k, \ k = 1, 2.$

MAC with strictly causal side information (SI):

Two independent state sequences Sⁿ₁, Sⁿ₂ each known to one encoder in a strictly causal manner:

$$X_{1,i} = f_{1,i}(m_1, S_1^{i-1}), \quad X_{2,i} = f_{2,i}(m_2, S_2^{i-1}), \quad i = 1, \dots, n$$
$$(\hat{m}_1, \hat{m}_2) = g(Y^n)$$

• Transmission is subject to input constraints $\frac{1}{n} \sum_{i=1}^{n} \phi_k(X_{k,i}) \leq \Gamma_k, \ k = 1, 2.$

• Memoryless, time invariant channel and states $P_{Y|S,X_1,X_2}$, P_{S_1} , P_{S_2} .

MAC with strictly causal side information (SI):

We are interested in $\mathcal{C}_{s\text{-}c}^{i},$ the region of all achievable rate and cost pairs

 $(R_1, R_2, \Gamma_1, \Gamma_2).$

We are interested in \mathcal{C}_{s-c}^{i} , the region of all achievable rate and cost pairs

 $(R_1, R_2, \Gamma_1, \Gamma_2).$

 $\mathcal{C}^{i}_{s-c}(\Gamma_{1},\Gamma_{2})$ – the collection of all rate pairs (R_{1},R_{2}) such that

 $(R_1, R_2, \Gamma_1, \Gamma_2) \in \mathcal{C}^{\mathsf{i}}_{\mathsf{s-c}}.$

MAC with causal SI:

Two state sequences S_1^n , S_2^n , each known to one encoder in a causal manner:

$$X_{1,i} = f_{1,i}(m_1, S_1^i), \quad X_{2,i} = f_{2,i}(m_2, S_2^i), \quad i = 1, \dots, n$$
$$(\hat{m}_1, \hat{m}_2) = g(Y^n)$$

• Transmission is subject to input constraints $\frac{1}{n} \sum_{i=1}^{n} \phi_k(X_{k,i}) \leq \Gamma_k, \ k = 1, 2.$

• Memoryless, time invariant channel and state $P_{Y|S,X_1,X_2}$, P_{S_1} , P_{S_2} .

MAC with causal SI:

We are interested in $\mathcal{C}_{\text{cau}}^{i},$ the region of all achievable rate and cost pairs

 $(R_1, R_2, \Gamma_1, \Gamma_2).$

 $\mathcal{C}_{cau}^{i}(\Gamma_{1},\Gamma_{2})$ – the collection of all rate pairs (R_{1},R_{2}) such that

 $(R_1, R_2, \Gamma_1, \Gamma_2) \in \mathcal{C}^{\mathsf{i}}_{\mathsf{cau}}.$

- Strictly causal SI does not increase the capacity of the single user channel

Outline

Problem Formulation

Strictly Causal SI

Background

MAC with independent SI

streams

Main result

Partial characterizations

Example

Causal SI

Summary

- Strictly causal SI does not increase the capacity of the single user channel

Outline

Problem Formulation	
Strictly Causal SI	
Background	
MAC with independent SI	
streams ▶Main result	
Partial characterizations	
▶ Example	
Causal SI	
Summary	
END	

$$-n\epsilon_n \leq I(M;Y^n) = \sum_{i=1}^n I(M;Y_i|Y^{i-1})$$
$$\leq \sum_{i=1}^n I(M,Y^{i-1};Y_i)$$
$$\leq \sum_{i=1}^n I(M,Y^{i-1},X_i;Y_i)$$
$$= \sum_{i=1}^n I(X_i;Y_i)$$

$$\leq \max_{P_X} I(X;Y) = nC$$

where C is the capacity without SI.

nR

- Strictly causal SI does not increase the capacity of the single user channel (a reminiscent of the situation in feedback capacity)

Outline

Problem Formulation

Strictly Causal SI

Background

MAC with independent SI

streams ▶Main result

Partial characterizations

Example

Causal SI

Summary

- Strictly causal SI does not increase the capacity of the single user channel (a reminiscent of the situation in feedback capacity)

- Transmission of the state (or compressed version thereof) to the other side is sub optimal: waste of precious rate, without increase in capacity.

Outline

Problem Formulation

Strictly Causal SI

Background

MAC with independent SI streams

Main result

Partial characterizations

Example

Causal SI

Summary

- Strictly causal SI does not increase the capacity of the single user channel (a reminiscent of the situation in feedback capacity)
- Transmission of the state (or compressed version thereof) to the other side is sub optimal: waste of precious rate, without increase in capacity.

What about networks (BC, MAC)?

Outline

Problem Formulation

Strictly Causal SI

Background

MAC with independent SI

streams Main result

Partial characterizationsExample

Causal SI

Summary

An example by Dueck (1980): A non degraded additive noise BC with feedback.
 The noise is common to the two channels.

Outline

Problem Formulation

Strictly Causal SI

Background

MAC with independent SI

streams ▶Main result

Partial characterizations

Example

Causal SI

Summary

An example by Dueck (1980): A non degraded additive noise BC with feedback.
 The noise is common to the two channels.

 \Rightarrow Equivalent to BC with strictly causal SI, where the state comprises the channel noise

Outline

Problem Formulation

Strictly Causal SI

Background

MAC with independent SI

streams ▶Main result

Partial characterizations

Example

Causal SI

Summary

- An example by Dueck (1980): A non degraded additive noise BC with feedback.
 The noise is common to the two channels.
 - > The encoder transmits the noise to the two users, uncompressed.

Outline

Problem Formulation

Strictly Causal SI

Background

- MAC with independent SI
- streams ▶Main result
- Partial characterizations

Example

Causal SI

Summary

An example by Dueck (1980): A non degraded additive noise BC with feedback.
 The noise is common to the two channels.

> The encoder transmits the noise to the two users, uncompressed.

Knowledge of the additive noise at the decoder facilitates decoding of the messages.

Outline

Problem Formulation

Strictly Causal SI

Background

MAC with independent SI streams

Main result

Partial characterizations

Example

Causal SI

Summary

An example by Dueck (1980): A non degraded additive noise BC with feedback.
 The noise is common to the two channels.

- > The encoder transmits the noise to the two users, uncompressed.
- Knowledge of the additive noise at the decoder facilitates decoding of the messages.
- Although precious rate is spent on transmitting the noise, the net effect is an increase in the capacity region.

Outline

Problem Formulation

Strictly Causal SI

Background

MAC with independent SI

streams Main result

Partial characterizations

Example

Causal SI

Summary

An example by Dueck (1980): A non degraded additive noise BC with feedback.
 The noise is common to the two channels.

- > The encoder transmits the noise to the two users, uncompressed.
- Knowledge of the additive noise at the decoder facilitates decoding of the messages.
- Although precious rate is spent on transmitting the noise, the net effect is an increase in the capacity region.
- Yields gains in capacity also when only lossy transmission of the noise is possible.

Outline

Problem Formulation

Strictly Causal SI

- Background
- MAC with independent SI
- streams Main result

```
Partial characterizations
```

```
Example
```

```
Causal SI
```

Summary

An example by Dueck (1980): A non degraded additive noise BC with feedback.
 The noise is common to the two channels.

- > The encoder transmits the noise to the two users, uncompressed.
- Knowledge of the additive noise at the decoder facilitates decoding of the messages.
- Although precious rate is spent on transmitting the noise, the net effect is an increase in the capacity region.
- Yields gains in capacity also when only lossy transmission of the noise is possible.
- In the MAC: If the state is known to both users, they can *cooperate* in transmitting the noise (state) to the decoder. This strategy enlarges the capacity region of the MAC [Lapidoth & Steinberg, IZS 2010].

Outline

Problem Formulation

Strictly Causal SI

- Background
- MAC with independent SI streams
- Main result

```
Partial characterizations
```

```
Example
```

```
Causal SI
```

```
Summary
```

ENL

[Lapidoth & Steinberg, IZS2010]:

Summary

 $\mathcal{R}_{s-c}^{\text{common}}$ - the CH of all $(R_1, R_2, \Gamma_1, \Gamma_2)$ satisfying

 $P_{U,V,X_1,X_2,S,Y} = P_S P_{X_1|U} P_{X_2|U} P_U P_{V|S} P_{Y|S,X_1,X_2}.$

▶ Outline	R_1	\leq	$I(X_1; Y X_2, U, V)$
Problem Formulation	R_2	\leq	$I(X_2; Y X_1, U, V)$
Strictly Causal SI	$R_1 + R_2$	\leq	$I(X_1, X_2; Y U, V)$
 Background MAC with independent SI 	$R_1 + R_2$	\leq	$I(X_1, X_2, V; Y) - I(V; S)$
streams ▶Main result	Γ_k	\geq	$E[\phi_k(X_k)],\qquad k=1,2$
Partial characterizations			

for some joint distribution

Causal SI

Example

Summary

 $\mathcal{R}_{s-c}^{\text{common}}$ - the CH of all $(R_1, R_2, \Gamma_1, \Gamma_2)$ satisfying

▶Outline	R_1	\leq	$I(X_1; Y X_2, U, V)$
Problem Formulation	R_2	\leq	$I(X_2; Y X_1, U, V)$
Strictly Causal SI	$R_1 + R_2$	\leq	$I(X_1, X_2; Y U, V)$
BackgroundMAC with independent SI	$R_1 + R_2$	\leq	$I(X_1, X_2, V; Y) - I(V; S)$
streams ▶Main result	Γ_k	\geq	$E[\phi_k(X_k)],\qquad k=1,2$
Partial characterizations			

for some joint distribution

Causal SI

Example

Summary

END

$$P_{U,V,X_1,X_2,S,Y} = P_S P_{X_1|U} P_{X_2|U} P_U P_{V|S} P_{Y|S,X_1,X_2}$$

 $X_1 - U - X_2$ $(X_1, U, X_2) \perp (V, S)$

 $\mathcal{R}_{s-c}^{\text{common}}$ - the CH of all $(R_1, R_2, \Gamma_1, \Gamma_2)$ satisfying

▶Outline	R_1	\leq	$I(X_1; Y X_2, U, V)$
Problem Formulation	R_2	\leq	$I(X_2; Y X_1, U, V)$
Strictly Causal SI	$R_1 + R_2$	\leq	$I(X_1, X_2; Y U, V)$
BackgroundMAC with independent SI	$R_1 + R_2$	\leq	$I(X_1, X_2, V; Y) - I(V; S)$
streams Main result Partial characterizations	Γ_k	\geq	$E[\phi_k(X_k)],\qquad k=1,2$

for some joint distribution

Causal SI

Example

Summary

END

$$P_{U,V,X_1,X_2,S,Y} = P_S P_{X_1|U} P_{X_2|U} P_U P_{V|S} P_{Y|S,X_1,X_2}$$

D

 $X_1 - U - X_2$ $(X_1, U, X_2) \perp (V, S)$ V - S - Y

 $\mathcal{R}_{s-c}^{\text{common}}$ - the CH of all $(R_1, R_2, \Gamma_1, \Gamma_2)$ satisfying

▶ Outline	R_1	\leq	$I(X_1; Y X_2, U, V)$
Problem Formulation	R_2	\leq	$I(X_2; Y X_1, U, V)$
Strictly Causal SI Background MAC with independent SI	$R_1 + R_2$	\leq	$I(X_1, X_2; Y U, V)$
streams ▶Main result ▶Partial characterizations	$R_1 + R_2$	\leq	$I(X_1, X_2, V; Y) - I(V; S)$
▶ Example	Γ_k	\geq	$E[\phi_k(X_k)],\qquad k=1,2$
Causal SI			

0	
Sum	nary

END

Theorem 1 [L&S, IZS 2010]

For the MAC with strictly causal SI commonly known by the two encoders, $\mathcal{R}_{s-c}^{common}$ is achievable.

 $\mathcal{R}_{s-c}^{\text{common}}$ - the CH of all $(R_1, R_2, \Gamma_1, \Gamma_2)$ satisfying

▶ Outline	R_1	\leq	$I(X_1; Y X_2, U, V)$
Problem Formulation	R_2	\leq	$I(X_2; Y X_1, U, V)$
Strictly Causal SI Background MAC with independent SI	$R_1 + R_2$	\leq	$I(X_1, X_2; Y U, V)$
streams ▶Main result ▶Partial characterizations	$R_1 + R_2$	\leq	$I(X_1, X_2, V; Y) - I(V; S)$
▶ Example	Γ_k	\geq	$E[\phi_k(X_k)],\qquad k=1,2$
Causal SI			

Summar
Gamma

END

Theorem 1 [L&S, IZS 2010]

For the MAC with strictly causal SI commonly known by the two encoders, $\mathcal{R}_{s-c}^{common}$ is achievable.

Observation: $\mathcal{R}_{s-c}^{common}$ can be strictly larger than the capacity region without SI.
We can write $\mathcal{R}_{s\text{-}c}^{\text{common}}$ as

▶ Outline	R_1	\leq	$I(X_1; Y X_2, U, V)$
Problem Formulation	R_2	\leq	$I(X_2; Y X_1, U, V)$
Strictly Causal SI	$R_1 + R_2$	\leq	$I(X_1, X_2; Y U, V)$
 Background MAC with independent SI 	$R_0 + R_1 + R_2$	\leq	$I(X_1, X_2; Y V)$
streams ▶Main result	R_0	\geq	I(V;S) - I(V;Y).
 Partial characterizations Example 	Γ_k	\geq	$E[\phi_k(X_k)],\qquad k=1,2$

Causal SI

Summary

We can write $\mathcal{R}_{s\text{-}c}^{\text{common}}$ as

▶ Outline	R_1	\leq	$I(X_1; Y X_2, U, V)$
Problem Formulation	R_2	\leq	$I(X_2; Y X_1, U, V)$
Strictly Causal SI	$R_1 + R_2$	\leq	$I(X_1, X_2; Y U, V)$
BackgroundMAC with independent SI	$R_0 + R_1 + R_2$	\leq	$I(X_1, X_2; Y V)$
streams ▶Main result	R_0	\geq	I(V;S) - I(V;Y).
 Partial characterizations Example 	Γ_k	\geq	$E[\phi_k(X_k)],\qquad k=1,2$

Causal SI

Summary

END

Based on MAC with common messages + block Markov scheme:

We can write $\mathcal{R}_{s\text{-c}}^{\text{common}}$ as

▶Outline	R_1	\leq	$I(X_1; Y X_2, U, V)$
Problem Formulation	R_2	\leq	$I(X_2; Y X_1, U, V)$
Strictly Causal SI	$R_1 + R_2$	\leq	$I(X_1, X_2; Y U, V)$
 Background MAC with independent SI 	$R_0 + R_1 + R_2$	\leq	$I(X_1, X_2; Y V)$
streams ▶Main result	R_0	\geq	I(V;S) - I(V;Y).
 Partial characterizations Example 	Γ_k	\geq	$E[\phi_k(X_k)],\qquad k=1,2$

Summary

END

Based on MAC with common messages + block Markov scheme:

The state sequence Sⁿ is compressed by a Wyner-Ziv scheme, with coding random variable V, and decoder side information Yⁿ.

We can write $\mathcal{R}_{s\text{-}c}^{\text{common}}$ as

▶Outline	R_1	\leq	$I(X_1; Y X_2, U, V)$
Problem Formulation	R_2	\leq	$I(X_2; Y X_1, U, V)$
Strictly Causal SI	$R_1 + R_2$	\leq	$I(X_1, X_2; Y U, V)$
 Background MAC with independent SI 	$R_0 + R_1 + R_2$	\leq	$I(X_1, X_2; Y V)$
streams ▶Main result	R_0	\geq	I(V;S) - I(V;Y).
 Partial characterizations Example 	Γ_k	\geq	$E[\phi_k(X_k)],\qquad k=1,2$

Causal	SI
--------	----

Summary

END

Based on MAC with common messages + block Markov scheme:

▶ The state sequence Sⁿ is compressed by a Wyner-Ziv scheme, with coding random variable V, and decoder side information Yⁿ.

• The compressed state is transmitted to the decoder in the *next transmission* block as a common message, together with the independent messages m_1 , m_2 .

We can write $\mathcal{R}_{s-c}^{common}$ as

▶ Outline	R_1	\leq	$I(X_1; Y X_2, U, V)$
Problem Formulation	R_2	\leq	$I(X_2; Y X_1, U, V)$
Strictly Causal SI	$R_1 + R_2$	\leq	$I(X_1, X_2; Y U, V)$
 Background MAC with independent SI 	$R_0 + R_1 + R_2$	\leq	$I(X_1, X_2; Y V)$
streams ▶Main result	R_0	\geq	I(V;S) - I(V;Y).
 Partial characterizations Example 	Γ_k	\geq	$E[\phi_k(X_k)],\qquad k=1,2$

Causal SI

Summary

END

Based on MAC with common messages + block Markov scheme:

- The state sequence Sⁿ is compressed by a Wyner-Ziv scheme, with coding random variable V, and decoder side information Yⁿ.
- The compressed state is transmitted to the decoder in the *next transmission* block as a common message, together with the independent messages m_1 , m_2 .
- Cooperation is possible, since the state is common.

Back to our problem:

The two encoders cannot establish cooperation of any kind

The two encoders cannot establish cooperation of any kind Joint transmission of the states is not possible.

Back to our probler	n:
---------------------	----

- The two encoders cannot establish cooperation of any kind Joint transmission of the states is not possible.
- Each of the encoders is working alone like in the single user channel.

Back to	our	prob	lem:
---------	-----	------	------

- The two encoders cannot establish cooperation of any kind Joint transmission of the states is not possible.
- Each of the encoders is working alone like in the single user channel.
 - In this setup, is SC SI beneficial at all?

Back to	our	prob	lem:
---------	-----	------	------

- The two encoders cannot establish cooperation of any kind Joint transmission of the states is not possible.
- Each of the encoders is working alone like in the single user channel.
 - In this setup, is SC SI beneficial at all?
 - If it is beneficial, is it a good idea to compress and transmit the states to the other side?

	Let \mathcal{R}_{sc}^{i} be the convex hull of the collection of all $(R_1, R_2, \Gamma_1, \Gamma_2)$ satisfying
▶ Outline	$0 \le R_1 \le I(X_1; Y X_2, V_1, V_2) - I(V_1; S_1 Y, V_2)$
Problem Formulation	$0 \le R_2 \le I(X_2; Y X_1, V_1, V_2) - I(V_2; S_2 Y, V_1)$
Strictly Causal SI	
 Background MAC with independent SI 	$R_1 + R_2 \leq I(X_1, X_2; Y V_1, V_2) - I(V_1, V_2; S_1, S_2 Y)$
streams Main result Partial characterizations	$\Gamma_k \geq \mathbb{E}\phi_k(X_k), k=1,2$
• Example	
Causal SI	for some $(V_1, V_2, S_1, S_2, X_1, X_2, Y)$ with joint distribution
Summary	$P_{V_1 S_1}P_{V_2 S_2}P_{S_1}P_{S_2}P_{X_1}P_{X_2}P_{Y S_1,S_2,X_1,X_2}.$
END	

	Let \mathcal{R}_{sc}^{i} be the convex	x hull	of the collection of all $(R_1, R_2, \Gamma_1, \Gamma_2)$ satisfying
▶ Outline	$0 \leq R_1$	\leq	$I(X_1; Y X_2, V_1, V_2) - I(V_1; S_1 Y, V_2)$
Problem Formulation	$0 \le R_2$	\leq	$I(X_2; Y X_1, V_1, V_2) - I(V_2; S_2 Y, V_1)$
Strictly Causal SI Background MAC with independent SI	$R_1 + R_2$	\leq	$I(X_1, X_2; Y V_1, V_2) - I(V_1, V_2; S_1, S_2 Y)$
streams Main result Partial characterizations	Γ_k	\geq	$\mathbb{E}\phi_k(X_k), \qquad k=1,2$
Causal SI			
Summary			$V_1 - S_1 - (V_2, Y, S_2)$
END			$V_2 - S_2 - (V_1, Y, S_1)$
		($(V_1, V_2) - (S_1, S_2) - Y$

	Let \mathcal{R}_{sc} be the conve	x nuli	of the collection of all $(R_1, R_2, \Gamma_1, \Gamma_2)$ satisfying
Outline	$0 \le R_1$	\leq	$I(X_1; Y X_2, V_1, V_2) - I(V_1; S_1 Y, V_2)$
Problem Formulation	$0 < R_{2}$	<	$I(X_2; Y X_1, V_1, V_2) - I(V_2; S_2 Y, V_1)$
Strictly Causal SI Background	 $R_1 + R_2$	- <	$I(X_1, X_2; Y V_1, V_2) - I(V_1, V_2; S_1, S_2 Y)$
MAC with independent Si streams Main result Partial characterizations	Γ_k	_ 	$\mathbb{E}\phi_k(X_k), \qquad k = 1, 2$
► Example			
Causal SI			
Summary			$V_1 - S_1 - (V_2, Y, S_2)$
END			$V_2 - S_2 - (V_1, Y, S_1)$
		($(V_1, V_2) - (S_1, S_2) - Y$

лI-11 - - 1 aticfvin g

 X_1, X_2 are independent of each other and of the quadruple (V_1, V_2, S_1, S_2) .

· · _ i ·

	Let \mathcal{R}_{sc}^{i} be the convex	x hull	of the collection of all $(R_1, R_2, \Gamma_1, \Gamma_2)$ satisfying
▶ Outline	$0 \leq R_1$	\leq	$I(X_1; Y X_2, V_1, V_2) - I(V_1; S_1 Y, V_2)$
Problem Formulation	$0 \leq R_2$	\leq	$I(X_2; Y X_1, V_1, V_2) - I(V_2; S_2 Y, V_1)$
Strictly Causal SI Background MAC with independent SI	$R_1 + R_2$	\leq	$I(X_1, X_2; Y V_1, V_2) - I(V_1, V_2; S_1, S_2 Y)$
streams Main result Partial characterizations	Γ_k	\geq	$\mathbb{E}\phi_k(X_k), \qquad k=1,2$
Causal SI			
Summary			$V_1 - S_1 - (V_2, Y, S_2)$
END			$V_2 - S_2 - (V_1, Y, S_1)$
		($(V_1, V_2) - (S_1, S_2) - Y$
	X_1, X_2 are independ	dent c	of each other and of the quadruple (V_1, V_2, S_1, S_2) .

 $(V_1, S_1) \perp (V_2, S_2)$

 \mathcal{R}_{sc}^{i} - the convex hull of the collection of all $(R_1, R_2, \Gamma_1, \Gamma_2)$ satisfying

Outline			
Oddine	$0 \leq R_1$	\leq	$I(X_1; Y X_2, V_1, V_2) - I(V_1; S_1 Y, V_2)$
Problem Formulation			
	$0 \le R_2$	\leq	$I(X_2; Y X_1, V_1, V_2) - I(V_2; S_2 Y, V_1)$
Strictly Causal SI			
Background	$B_1 \pm B_2$	<	$I(X_1, X_2; V V_1, V_2) = I(V_1, V_2; S_1, S_2 V)$
MAC with independent SI	101 + 102	<u> </u>	$I(X_1, X_2, I V_1, V_2) = I(V_1, V_2, D_1, D_2 I)$
streams Main result			
Partial characterizations	Γ_k	2	$\mathbb{E}\phi_k(X_k), \qquad k=1,2$
Example			

Theorem 2 (Strictly-Causal, independent SI streams)

 $\mathcal{R}_{\texttt{sc}}^{\texttt{i}} \subseteq \mathcal{C}_{\texttt{sc}}^{\texttt{i}}$

Causal SI

Summary

	$0 \leq R_1$	\leq	$I(X_1; Y X_2, V_1, V_2) - I(V_1; S_1 Y, V_2)$
▶ Outline	$0 \le R_2$	\leq	$I(X_2; Y X_1, V_1, V_2) - I(V_2; S_2 Y, V_1)$
Droblem Formulation	$R_1 + R_2$	\leq	$I(X_1, X_2; Y V_1, V_2) - I(V_1, V_2; S_1, S_2 Y)$
	Γ_k	\geq	$\mathbb{E}\phi_k(X_k), \qquad k = 1, 2$
Strictly Causal SI Background			
MAC with independent SI			
Main result			
Example			
Causal SI			
Summary			

A block Markov scheme:

	$0 \leq R_1$	\leq	$I(X_1; Y X_2, V_1, V_2) - I(V_1; S_1 Y, V_2)$
▶ Outline	$0 \le R_2$	\leq	$I(X_2; Y X_1, V_1, V_2) - I(V_2; S_2 Y, V_1)$
Problem Formulation	$R_1 + R_2$	\leq	$I(X_1, X_2; Y V_1, V_2) - I(V_1, V_2; S_1, S_2 Y)$
	Γ_k	\geq	$\mathbb{E}\phi_k(X_k), \qquad k=1,2$

Strictly Causal SI

Background

streams ▶Main result

Partial characterizations

Example

Causal SI

Summary

Outline	
---------	--

Problem Formulation

Strictly Causal SI

Background

MAC with independent SI

streams
Main result

Partial characterizations

Example

Causal SI

Summary

END

$0 \leq R_1$	\leq	$I(X_1; Y X_2, V_1, V_2) - I(V_1; S_1 Y, V_2)$
$0 \le R_2$	\leq	$I(X_2; Y X_1, V_1, V_2) - I(V_2; S_2 Y, V_1)$
$R_1 + R_2$	\leq	$I(X_1, X_2; Y V_1, V_2) - I(V_1, V_2; S_1, S_2 Y)$
Γ_k	\geq	$\mathbb{E}\phi_k(X_k), \qquad k = 1, 2$

A block Markov scheme:

The state sequences S₁ⁿ, S₂ⁿ are compressed by a *distributed* Wyner-Ziv scheme, with coding random variable V₁, V₂ and decoder side information Yⁿ.

Vutline

Problem Formulation

Strictly Causal SI

Background

MAC with independent SI

streams
Main result

Partial characterizations

Example

Causal SI

Summary

END

$0 \leq R_1$	\leq	$I(X_1; Y X_2, V_1, V_2) - I(V_1; S_1 Y, V_2)$
$0 \le R_2$	\leq	$I(X_2; Y X_1, V_1, V_2) - I(V_2; S_2 Y, V_1)$
$R_1 + R_2$	\leq	$I(X_1, X_2; Y V_1, V_2) - I(V_1, V_2; S_1, S_2 Y)$
Γ_k	\geq	$\mathbb{E}\phi_k(X_k), \qquad k=1,2$

A block Markov scheme:

The state sequences S₁ⁿ, S₂ⁿ are compressed by a *distributed* Wyner-Ziv scheme, with coding random variable V₁, V₂ and decoder side information Yⁿ.

$$(V_1, V_2) - (S_1, S_2) - Y$$

Outline	
---------	--

Problem Formulation

Strictly Causal SI

Background

MAC with independent SI

streams Main result

Partial characterizations

Example

Causal SI

Summary

END

$0 \leq R_1$	\leq	$I(X_1; Y X_2, V_1, V_2) - I(V_1; S_1 Y, V_2)$
$0 \le R_2$	\leq	$I(X_2; Y X_1, V_1, V_2) - I(V_2; S_2 Y, V_1)$
$R_1 + R_2$	\leq	$I(X_1, X_2; Y V_1, V_2) - I(V_1, V_2; S_1, S_2 Y)$
Γ_k	\geq	$\mathbb{E}\phi_k(X_k), \qquad k = 1, 2$

A block Markov scheme:

The state sequences S₁ⁿ, S₂ⁿ are compressed by a *distributed* Wyner-Ziv scheme, with coding random variable V₁, V₂ and decoder side information Yⁿ.

 $(V_1, V_2) - (S_1, S_2) - Y$

The compressed states are transmitted to the decoder in the *next transmission* block as independent codewords, together with the independent messages m₁, m₂.

Outline

Problem Formulation

Strictly Causal SI

Background

MAC with independent SI

streams Main result

Partial characterizations

Example

Causal SI

Summary

END

$0 \leq R_1$	\leq	$I(X_1; Y X_2, V_1, V_2) - I(V_1; S_1 Y, V_2)$
$0 \le R_2$	\leq	$I(X_2; Y X_1, V_1, V_2) - I(V_2; S_2 Y, V_1)$
$R_1 + R_2$	\leq	$I(X_1, X_2; Y V_1, V_2) - I(V_1, V_2; S_1, S_2 Y)$
Γ_k	\geq	$\mathbb{E}\phi_k(X_k), \qquad k = 1, 2$

A block Markov scheme:

The state sequences S₁ⁿ, S₂ⁿ are compressed by a *distributed* Wyner-Ziv scheme, with coding random variable V₁, V₂ and decoder side information Yⁿ.

 $(V_1, V_2) - (S_1, S_2) - Y$

The compressed states are transmitted to the decoder in the *next transmission* block as independent codewords, together with the independent messages m₁, m₂.

 $X_1 \perp X_2$, independent of (V_1, V_2, S_1, S_2) .

Outline

Problem Formulation

Strictly Causal SI

Background

MAC with independent SI

streams Main result

Partial characterizations

Example

Causal SI

Summary

END

$0 \leq R_1$	\leq	$I(X_1; Y X_2, V_1, V_2) - I(V_1; S_1 Y, V_2)$
$0 \le R_2$	\leq	$I(X_2; Y X_1, V_1, V_2) - I(V_2; S_2 Y, V_1)$
$R_1 + R_2$	\leq	$I(X_1, X_2; Y V_1, V_2) - I(V_1, V_2; S_1, S_2 Y)$
Γ_k	\geq	$\mathbb{E}\phi_k(X_k), \qquad k=1,2$

A block Markov scheme:

The state sequences S₁ⁿ, S₂ⁿ are compressed by a *distributed* Wyner-Ziv scheme, with coding random variable V₁, V₂ and decoder side information Yⁿ.

 $(V_1, V_2) - (S_1, S_2) - Y$

The compressed states are transmitted to the decoder in the *next transmission* block as independent codewords, together with the independent messages m₁, m₂.

 $X_1 \perp X_2$, independent of (V_1, V_2, S_1, S_2) .

The two codes are decoupled.

Partial characterizations

Two propositions – about the sum rate, and about the asymmetric case.

Outline

Problem Formulation

Strictly Causal SI

Background

MAC with independent SI

streams

Main result

Partial characterizations

Example

Causal SI

Summary

Partial characterizations

Two propositions – about the sum rate, and about the asymmetric case.

Proposition 1 *Strictly-causal independent SI does not increase the sum-rate capacity:*

$$\mathcal{C}_{\Sigma, \text{s-c}}^{\mathsf{i}}(\Gamma_1, \Gamma_2) = \max I(X_1, X_2; Y),$$

where the maximum is over all product distributions $P_{X_1}P_{X_2}$ satisfying the input constraints

$$\mathbb{E}\phi_k(X_k) \le \Gamma_k, \quad k = 1, 2.$$

Outline

Problem Formulation

Strictly Causal SI

Background

MAC with independent SI

streams

Main result

Partial characterizations

Example

Causal SI

Summary

Partial characterizations

The asymmetric case:

Outline

Problem Formulation

Strictly Causal SI

Background

MAC with independent SI

streams

Main result

Partial characterizations

Example

Causal SI

Summary

END

Proposition 2 Let S_2 be deterministic. Then the maximal rate of User 1 with strictly causal SI is equal to its single user capacity without SI

 $\max \{ R_1 : (R_1, 0) \in \mathcal{C}_{s-c}^{i}(\Gamma_1, \Gamma_2) \} = \max I(X_1; Y | X_2),$

where the maximum in the right hand side is over all $P_{X_1}P_{X_2}$ satisfying the input constraints

 $\mathbb{E}\phi_k(X_k) \le \Gamma_k, \quad k = 1, 2.$

The Gaussian MAC where the state S_1 comprises the channel noise, and S_2 is null:

$$Y = X_1 + X_2 + S_1, \qquad S_1 \sim \mathcal{N}\left(0, \sigma_{s_1}^2\right)$$
$$\mathsf{E}\left[X_1^2\right] \le \Gamma_1, \qquad \mathsf{E}\left[X_2^2\right] \le \Gamma_2.$$

Outline

Problem Formulation

Strictly Causal SI

Background

MAC with independent SI

streams

Main result

Partial characterizations

Example

Causal SI

Summary

The Gaussian MAC where the state S_1 comprises the channel noise, and S_2 is null:

$$Y = X_1 + X_2 + S_1, \qquad S_1 \sim \mathcal{N}\left(0, \sigma_{s_1}^2\right)$$
$$\mathsf{E}\left[X_1^2\right] \le \Gamma_1, \qquad \mathsf{E}\left[X_2^2\right] \le \Gamma_2.$$

 $\mathcal{C}_{s-c}^{i}(\Gamma_{1},\Gamma_{2})$ is the collection of all rate-pairs (R_{1},R_{2}) satisfying

$$R_{1} \leq \frac{1}{2} \log \left(1 + \frac{\Gamma_{1}}{\sigma_{s_{1}}^{2}} \right)$$
$$R_{1} + R_{2} \leq \frac{1}{2} \log \left(1 + \frac{\Gamma_{1} + \Gamma_{2}}{\sigma_{s_{1}}^{2}} \right)$$

Outline

Problem Formulation

Strictly Causal SI

Background

MAC with independent SI

streams

Main result

Partial characterizations

Example

Causal SI

Summary

The Gaussian MAC where the state S_1 comprises the channel noise, and S_2 is null:

$$Y = X_1 + X_2 + S_1, \qquad S_1 \sim \mathcal{N}\left(0, \sigma_{s_1}^2\right)$$
$$\mathsf{E}\left[X_1^2\right] \le \Gamma_1, \qquad \mathsf{E}\left[X_2^2\right] \le \Gamma_2.$$

 $\mathcal{C}_{s-c}^{i}(\Gamma_{1},\Gamma_{2})$ is the collection of all rate-pairs (R_{1},R_{2}) satisfying

$$R_{1} \leq \frac{1}{2} \log \left(1 + \frac{\Gamma_{1}}{\sigma_{s_{1}}^{2}} \right)$$
$$R_{1} + R_{2} \leq \frac{1}{2} \log \left(1 + \frac{\Gamma_{1} + \Gamma_{2}}{\sigma_{s_{1}}^{2}} \right)$$

Proof:

Direct part: good choice of random variables in \mathcal{R}_{sc}^{i} .

Outline

Problem Formulation

Strictly Causal SI

- Background
- MAC with independent SI
- streams
- Main result
- Partial characterizations
- Example

Causal SI

Summary

The Gaussian MAC where the state S_1 comprises the channel noise, and S_2 is null:

$$Y = X_1 + X_2 + S_1, \qquad S_1 \sim \mathcal{N}\left(0, \sigma_{s_1}^2\right)$$
$$\mathsf{E}\left[X_1^2\right] \le \Gamma_1, \qquad \mathsf{E}\left[X_2^2\right] \le \Gamma_2.$$

 $\mathcal{C}_{s-c}^{i}(\Gamma_{1},\Gamma_{2})$ is the collection of all rate-pairs (R_{1},R_{2}) satisfying

$$R_{1} \leq \frac{1}{2} \log \left(1 + \frac{\Gamma_{1}}{\sigma_{s_{1}}^{2}} \right)$$
$$R_{1} + R_{2} \leq \frac{1}{2} \log \left(1 + \frac{\Gamma_{1} + \Gamma_{2}}{\sigma_{s_{1}}^{2}} \right)$$

Proof:

Direct part: good choice of random variables in \mathcal{R}_{sc}^{i} .

Converse: use Propositions 1 and 2.

Outline

Problem Formulation

Strictly Causal SI

- Background
- MAC with independent SI
- streams
- Main result
- Partial characterizations
- Example

Causal SI

Summary

- User 1 knows the noise in a strictly causal manner, but cannot utilize it to increase his own rate.

- User 1 knows the noise in a strictly causal manner, but cannot utilize it to increase his own rate.
- He can use it to increase the rate of User 2.

MAC with causal SI

The region we had for the strictly causal case is still achievable

▶Outline	$0 \leq R_1$	\leq	$I(X_1; Y X_2, V_1, V_2) - I(V_1; S_1 Y, V_2)$
Problem Formulation	$0 \le R_2$	\leq	$I(X_2; Y X_1, V_1, V_2) - I(V_2; S_2 Y, V_1)$
Strictly Causal SI	$R_1 + R_2$	\leq	$I(X_1, X_2; Y V_1, V_2) - I(V_1, V_2; S_1, S_2 Y)$
Causal SI	Γ_{k}	\geq	$\mathbb{E}\phi_k(X_k), \qquad k=1,2$
MAC with causal SI - main			
The naïve approach			
▶ Example			
Summary			
END			

MAC with causal SI

The region we had for the strictly causal case is still achievable

▶ Outline	$0 \leq R_1$	\leq	$I(X_1; Y X_2, V_1, V_2) - I(V_1; S_1 Y, V_2)$
Problem Formulation	$0 \leq R_2$	\leq	$I(X_2; Y X_1, V_1, V_2) - I(V_2; S_2 Y, V_1)$
Strictly Causal SI	$R_1 + R_2$	\leq	$I(X_1, X_2; Y V_1, V_2) - I(V_1, V_2; S_1, S_2 Y)$
	Γ_k	\geq	$\mathbb{E}\phi_k(X_k), \qquad k = 1, 2$

with the Markov conditions

$$V_1 - S_1 - (V_2, Y, S_2)$$
$$V_2 - S_2 - (V_1, Y, S_1)$$
$$(V_1, V_2) - (S_1, S_2) - Y$$
$$X_1 \perp X_2, \qquad (X_1, X_2) \perp (V_1, V_2, S_1, S_2)$$

Causal SI

result

Example

Summary

END

MAC with causal SI - main

The naïve approach

MAC with causal SI

The region we had for the strictly causal case is still achievable

▶ Outline	$0 \leq R_1$	\leq	$I(X_1; Y X_2, V_1, V_2) - I(V_1; S_1 Y, V_2)$
Problem Formulation	$0 \leq R_2$	\leq	$I(X_2; Y X_1, V_1, V_2) - I(V_2; S_2 Y, V_1)$
Strictly Causal SI	$R_1 + R_2$	\leq	$I(X_1, X_2; Y V_1, V_2) - I(V_1, V_2; S_1, S_2 Y)$
Causal SI	Γ_k	\geq	$\mathbb{E}\phi_k(X_k), \qquad k=1,2$

with the Markov conditions

$$V_1 - S_1 - (V_2, Y, S_2)$$

$$V_2 - S_2 - (V_1, Y, S_1)$$

$$(V_1, V_2) - (S_1, S_2) - Y$$

$$X_1 \perp X_2, \qquad (X_1, X_2) \perp (V_1, V_2, S_1, S_2)$$

But now, X_1 , X_2 can depend on S.

Causal SI

result

Example

Summary

END

MAC with causal SI - main

The naïve approach
MAC with causal SI

The region we had for the strictly causal case is still achievable

$0 \leq R_1$	\leq	$I(X_1; Y X_2, V_1, V_2) - I(V_1; S_1 Y, V_2)$
 $0 \le R_2$	\leq	$I(X_2; Y X_1, V_1, V_2) - I(V_2; S_2 Y, V_1)$
$R_1 + R_2$	\leq	$I(X_1, X_2; Y V_1, V_2) - I(V_1, V_2; S_1, S_2 Y)$
Γ_k	\geq	$\mathbb{E}\phi_k(X_k), \qquad k = 1, 2$

with the Markov conditions

$$V_1 - S_1 - (V_2, Y, S_2)$$
$$V_2 - S_2 - (V_1, Y, S_1)$$
$$(V_1, V_2) - (S_1, S_2) - Y$$
$$X_1 \perp X_2, \qquad (X_1, X_2) \perp (V_1, V_2, S_1, S_2)$$

But now, X_1 , X_2 can depend on S.

 \Rightarrow Use Shannon strategies on top of our block Markov scheme.

Outline

Problem Formulation

MAC with causal SI - main

The naïve approach

Strictly Causal SI

Causal SI

result

Example

Summary

MAC with causal SI

The region we had for the strictly causal case is still achievable

$0 \leq R_1$	\leq	$I(X_1; Y X_2, V_1, V_2) - I(V_1; S_1 Y, V_2)$
 $0 \leq R_2$	\leq	$I(X_2; Y X_1, V_1, V_2) - I(V_2; S_2 Y, V_1)$
$R_1 + R_2$	\leq	$I(X_1, X_2; Y V_1, V_2) - I(V_1, V_2; S_1, S_2 Y)$
Γ_k	\geq	$\mathbb{E}\phi_k(X_k), \qquad k=1,2$

with the Markov conditions

$$V_1 - S_1 - (V_2, Y, S_2)$$
$$V_2 - S_2 - (V_1, Y, S_1)$$
$$(V_1, V_2) - (S_1, S_2) - Y$$
$$X_1 \perp X_2, \qquad (X_1, X_2) \perp (V_1, V_2, S_1, S_2)$$

But now, X_1 , X_2 can depend on S.

Replace (X_1, X_2) by (U_1, U_2) independent of (S_1, S_2) , and let

 $P_{X_1|U_1,S_1}, P_{X_2|U_2,S_2}$

Strictly Causal SI

Causal SI

Outline

MAC with causal SI - main

```
result
▶The naïve approach
```

Problem Formulation

Example

Summary

Main result

 $\mathcal{R}_{\mathsf{cau}}^{\mathsf{i}}$ - the CH of all $(R_1,R_2,\Gamma_1,\Gamma_2)$ satisfying

▶ Outline	$0 \le R_1 \le I(U_1; Y U_2, V_1, V_2) - I(V_1; S_1 Y, V_2)$
Problem Formulation	$0 \le R_2 \le I(U_2; Y U_1, V_1, V_2) - I(V_2; S_2 Y, V_1)$
Strictly Causal SI	$R_1 + R_2 \leq I(U_1, U_2; Y V_1, V_2) - I(V_1, V_2; S_1, S_2 Y)$
Causal SI	$\Gamma_k \geq \mathbb{E}\phi_k(X_k), k=1,2$
 MAC with causal SI - main result The naïve approach 	for some $(V_1, V_2, U_1, U_2, S_1, S_2, X_1, X_2, Y)$ with joint distribution
▶ Example	$P_{\mathbf{Y}} = Q_{\mathbf{Y}} = Q_{\mathbf{Y}} = P_{\mathbf{Y}} = P_{\mathbf{Y}} = P_{\mathbf{Y}} = Q_{\mathbf{Y}} $
Summary	$ V_1 S_1 V_2 S_2 V_1 V_2 S_1 V_2 S_1 V_2 V_1 V_1, S_1 V_2 V_2, S_2 V S_1, S_2, X_1, X_2 $
END	

Main result

 $\mathcal{R}_{\mathsf{cau}}^{\mathsf{i}}$ - the CH of all $(R_1, R_2, \Gamma_1, \Gamma_2)$ satisfying

▶ Outline	$0 \le R_1 \le I(U_1; Y U_2, V_1, V_2) - I(V_1; S_1 Y, V_2)$
Problem Formulation	$0 \le R_2 \le I(U_2; Y U_1, V_1, V_2) - I(V_2; S_2 Y, V_1)$
Strictly Causal SI	$R_1 + R_2 \leq I(U_1, U_2; Y V_1, V_2) - I(V_1, V_2; S_1, S_2 Y)$
Causal SI	$\Gamma_k \geq \mathbb{E}\phi_k(X_k), k=1,2$
 MAC with causal SI - main result The naïve approach 	for some $(V_1, V_2, U_1, U_2, S_1, S_2, X_1, X_2, Y)$ with joint distribution
▶ Example	
Summary	$P_{V_1 S_1}P_{V_2 S_2}P_{U_1}P_{U_2}P_{S_1}P_{S_2}P_{X_1 U_1,S_1}P_{X_2 U_2,S_2}P_{Y S_1,S_2,X_1,X_2}.$
END	

Theorem 3 (Causal, independent SI streams)

 $\mathcal{R}_{cau}^{i}\subseteq \mathcal{C}_{cau}^{i}$

Summary

The naïve approach – using Shannon strategies, without block Markov coding of the state. It leads to the region of all (R_1, R_2) satisfying

$R_1 \le I(T_1; Y T_2, Q)$
$R_2 \le I(T_2; Y T_1, Q)$
$R_1 + R_2 \le I(T_1, T_2; Y Q)$

for some joint distribution $P_Q P_{T_1|Q} P_{T_2|Q} P_{Y|T_1,T_2}$. Here

 T_k , k = 1, 2 are random Shannon strategies:

 $T_k \in \mathcal{T}_k$, the set of mappings $t_k : S_k \to \mathcal{X}_k$

Outline

Problem Formulation

Strictly Causal SI

Causal SI

MAC with causal SI - main

result The naïve approach

Example

Summary

The naïve approach – using Shannon strategies, without block Markov coding of the state. It leads to the region of all (R_1, R_2) satisfying

$R_1 \le I(T_1; Y T_2, Q)$
$R_2 \le I(T_2; Y T_1, Q)$
$R_1 + R_2 \le I(T_1, T_2; Y Q)$

for some joint distribution $P_Q P_{T_1|Q} P_{T_2|Q} P_{Y|T_1,T_2}$. Here

 T_k , k = 1, 2 are random Shannon strategies:

 $T_k \in \mathcal{T}_k$, the set of mappings $t_k : S_k \to \mathcal{X}_k$

Q is a time sharing random variable,

Outline

Problem Formulation

Strictly Causal SI

Causal SI

MAC with causal SI - main result

The naïve approach

Example

Summary

The naïve approach – using Shannon strategies, without block Markov coding of the state. It leads to the region of all (R_1, R_2) satisfying

$R_1 \le I(T_1; Y T_2, Q)$
$R_2 \le I(T_2; Y T_1, Q)$
$R_1 + R_2 \le I(T_1, T_2; Y Q)$

for some joint distribution $P_Q P_{T_1|Q} P_{T_2|Q} P_{Y|T_1,T_2}$. Here

 T_k , k = 1, 2 are random Shannon strategies:

 $T_k \in \mathcal{T}_k$, the set of mappings $t_k : S_k \to \mathcal{X}_k$

Q is a time sharing random variable, and

$$\begin{split} P_{Y|T_1,T_2}(y|t_1,t_2) &= \sum_{s_1 \in \mathcal{S}_1} \sum_{s_2 \in \mathcal{S}_2} P_{S_1}(s_1) P_{S_2}(s_2) \\ &\cdot P_{Y|S_1,S_2,X_1,X_2} \left(y|s_1,s_2,t_1(s_1),t_2(s_2) \right). \end{split}$$

Outline

Problem Formulation

Strictly Causal SI

Causal SI

MAC with causal SI - main result

The naïve approach

Example

Summary

The naïve approach – using Shannon strategies, without block Markov coding of the state. It leads to the region of all (R_1, R_2) satisfying Outline $R_1 \leq I(T_1; Y | T_2, Q)$ **Problem Formulation** $R_2 \leq I(T_2; Y | T_1, Q)$ Strictly Causal SI $R_1 + R_2 \leq I(T_1, T_2; Y|Q)$ Causal SI MAC with causal SI - main for some joint distribution $P_Q P_{T_1|Q} P_{T_2|Q} P_{Y|T_1,T_2}$. result The naïve approach Example We denote this region as $\mathcal{R}^{naïve}$. Summary

The naïve approach – using Shannon strategies, without block Markov coding of the state. It leads to the region of all (R_1, R_2) satisfying Outline $R_1 < I(T_1; Y | T_2, Q)$ **Problem Formulation** $R_2 \leq I(T_2; Y | T_1, Q)$ Strictly Causal SI $R_1 + R_2 \leq I(T_1, T_2; Y|Q)$ Causal SI MAC with causal SI - main for some joint distribution $P_Q P_{T_1|Q} P_{T_2|Q} P_{Y|T_1,T_2}$. result The naïve approach Example We denote this region as $\mathcal{R}^{naïve}$. Summary END $\mathcal{R}^{\text{naïve}}$ contains the region suggested in [S.A. Jafar, Dec 2006].

- \mathcal{R}_{cau}^{i} contains the region of the naïve approach, since we can always choose deterministic (V_1, V_2) .

- In some cases, the inclusion is strict.

Outline

Problem Formulation

Strictly Causal SI

Causal SI

MAC with causal SI - main result

The naïve approach

Example

Summary

The asymmetric state-dependent MAC consisting of two single user channels:

Outline

Problem Formulation

Strictly Causal SI

Causal SI

 MAC with causal SI - main result
 The naïve approach

Example

Summary

END

 $\mathcal{X}_1 = \{0, 1\}, \quad \mathcal{X}_2 = \{0, 1, 2, 3\}, \quad \mathcal{Y} = \mathcal{Y}_1 \times \mathcal{Y}_2$

 $\mathcal{Y}_1 = \{0, 1\}, \quad \mathcal{Y}_2 = \{0, 1, 2, 3\}.$

The asymmetric state-dependent MAC consisting of two single user channels:

 $\mathcal{X}_1 = \{0, 1\}, \quad \mathcal{X}_2 = \{0, 1, 2, 3\}, \quad \mathcal{Y} = \mathcal{Y}_1 \times \mathcal{Y}_2$

$$\mathcal{Y}_1 = \{0, 1\}, \quad \mathcal{Y}_2 = \{0, 1, 2, 3\}.$$

Strictly Causal SI

Problem Formulation

The charmer is defined as	The	channel	is	defined	as
---------------------------	-----	---------	----	---------	----

MAC with causal SI - main result The naïve approach

Example

Causal SI

Summary

END

$Y_1 \quad = \quad X_1$ $Y_2 = X_2 \oplus S_1,$

- p. 24/27

Outline

Problem Formulation Strictly Causal SI The channel is defined as Causal SI MAC with causal SI - main The naïve approach Example Summary where

The asymmetric state-dependent MAC consisting of two single user channels:

 $\mathcal{X}_1 = \{0, 1\}, \quad \mathcal{X}_2 = \{0, 1, 2, 3\}, \quad \mathcal{Y} = \mathcal{Y}_1 \times \mathcal{Y}_2$

$$\mathcal{Y}_1 = \{0, 1\}, \quad \mathcal{Y}_2 = \{0, 1, 2, 3\}.$$

$$Y_1 = X_1$$
$$Y_2 = X_2 \oplus S_1,$$

 $S_1 = \{0, 1, 2, 3\}, P_{S_1} = (1 - p, p/3, p/3, p/3), H(S_1) < 1.$

Lapidoth & Steinberg, ISIT 2010

Outline

result

▶ Outline	Y_1	=	$X_1,$	binary
Problem Formulation	Y_2	=	$X_2 \oplus S_1,$	quaternary with $H(S_1) < 1$.
Strictly Causal SI				
Causal SI				
MAC with causal SI - main				
result ▶The naïve approach				
▶ Example				
Summary				
END				

▶ Outline	Y_{1}	1 =	=	$X_1,$	binary
Problem Formulation	V	- - =	_	$X_2 \oplus S_1$	quaternary with $H(S_1) < 1$
Strictly Causal SI	1,	2 –		$M_2 \cup D_1,$	
Causal SI MAC with causal SI - main result The naïve approach	What is the may	kimal	tra	nsmission rat	e of user 2 under each of the schemes?

Summary

Example

▶Outline	$Y_1 = X_1$, binary
Problem Formulation Strictly Causal SI	$Y_2 = X_2 \oplus S_1$, quaternary with $H(S_1) < 1$.
Causal SI MAC with causal SI - main result The naïve approach Example	What is the maximal transmission rate of user 2 under each of the schemes?
Summary END	- The block Markov coding scheme yields $R_{2,\max}^{(bm)} = 2$.

▶Outline	$Y_1 = X_1$, binary			
Problem Formulation	$Y_2 = X_2 \oplus S_1$, quaternary with $H(S_1) < 1$.			
Causal SI MAC with causal SI - main result The naïve approach Example	What is the maximal transmission rate of user 2 under each of the schemes?			
Summary	- The block Markov coding scheme yields $R_{2,\max}^{(bm)} = 2$.			
END	Achievability - by proper choice of random variables in \mathcal{R}_{cau}^{i} .			

▶Outline	$Y_1 = X_1,$ binary				
Problem Formulation Strictly Causal SI	$Y_2 = X_2 \oplus S_1$, quaterr	hary with $H(S_1) < 1$.			
Causal SI MAC with causal SI - main result The naïve approach Example	What is the maximal transmission rate of user 2 under each of the schemes?				
Summary	- The block Markov coding scheme yields $R_{2,\max}^{(bm)} = 2$.				
END	Achievability - by proper choice of random	chievability - by proper choice of random variables in \mathcal{R}_{cau}^{i} .			

This is tight, since $|\mathcal{X}_2| = 4$.

▶Outline	Y_1	=	$X_1,$	binary
Problem Formulation	Y_2	=	$X_2 \oplus S_1,$	quaternary with $H(S_1) < 1$.
Strictly Causal SI	What is the maxi	nal tra	nemission ra	to of user 2 under each of the schemes?
 MAC with causal SI - main result The naïve approach Example 	what is the maximal transmission rate of user 2 under each of the schemes?			
Summary	- The block Markov coding scheme yields $R_{2,\max}^{(bm)} = 2$. Achievability - by proper choice of random variables in \mathcal{R}_{cau}^{i} .			
END				
	This is tight,	since	$ \mathcal{X}_2 = 4.$	

- It can be shown that $R_{2,\max}^{(\text{naïve})} < 2.$

Summary

	Derived achievable region for the MAC with two independent strictly causal SI
▶ Outline	streams, based on block Markov encoding of the state.
Problem Formulation	Although cooperation between the users is impossible in this setup, strictly
Strictly Causal SI	causal SI enlarges the capacity region of the MAC.
Summary	Extended the results to causal SI
END	The new region for causal SI is strictly better than the region obtained by the
	naïve approach, which utilizes only Shannon strategies without block-Markov
	coding.

Thank You!