The Multiple Access Channel with Two Independent States each Known Causally to One Encoder

Amos Lapidoth and Yossef Steinberg

Outline

Outline

- Problem Formulation: The MAC with strictly causal and causal independent SI

Outline

- Problem Formulation: The MAC with strictly causal and causal independent SI
- Background and related results:
> The single user channel
, Broadcast channels
, MAC with common SI

Outline

- Problem Formulation: The MAC with strictly causal and causal independent SI
- Background and related results:
> The single user channel
, Broadcast channels
, MAC with common SI
- An achievable region for the strictly causal model

Outline

- Problem Formulation: The MAC with strictly causal and causal independent SI
- Background and related results:
> The single user channel
, Broadcast channels
, MAC with common SI
- An achievable region for the strictly causal model
- Example

Outline

- Problem Formulation: The MAC with strictly causal and causal independent SI
- Background and related results:
> The single user channel
, Broadcast channels
, MAC with common SI
- An achievable region for the strictly causal model
- Example
- An achievable region for the causal model

Outline

- Problem Formulation: The MAC with strictly causal and causal independent SI
- Background and related results:
, The single user channel
, Broadcast channels
, MAC with common SI
- An achievable region for the strictly causal model
- Example
- An achievable region for the causal model
- The naïve approach

Outline

- Problem Formulation: The MAC with strictly causal and causal independent SI
- Background and related results:
> The single user channel
, Broadcast channels
, MAC with common SI
- An achievable region for the strictly causal model
- Example
- An achievable region for the causal model
- The naïve approach
- Example

Problem Formulation

Problem Formulation

Strictly Causal SI

Causal SI

Summary

END

Outline

MAC with strictly causal side information (SI):

Problem Formulation

Outline

Problem Formulation

Strictly Causal SI

Causal SI

Summary

END

MAC with strictly causal side information (SI):

- Two independent state sequences S_{1}^{n}, S_{2}^{n} each known to one encoder in a strictly causal manner:

$$
X_{1, i}=f_{1, i}\left(m_{1}, S_{1}^{i-1}\right), \quad X_{2, i}=f_{2, i}\left(m_{2}, S_{2}^{i-1}\right), \quad i=1, \ldots, n
$$

Problem Formulation

Outline

Problem Formulation

Strictly Causal SI

Causal SI

Summary

END

MAC with strictly causal side information (SI):

- Two independent state sequences S_{1}^{n}, S_{2}^{n} each known to one encoder in a strictly causal manner:

$$
\begin{aligned}
& X_{1, i}=f_{1, i}\left(m_{1}, S_{1}^{i-1}\right), \quad X_{2, i}=f_{2, i}\left(m_{2}, S_{2}^{i-1}\right), \quad i=1, \ldots, n \\
& \left(\hat{m}_{1}, \hat{m}_{2}\right)=g\left(Y^{n}\right)
\end{aligned}
$$

Problem Formulation

Outline

Problem Formulation

Strictly Causal SI

Causal SI

Summary

END

MAC with strictly causal side information (SI):

- Two independent state sequences S_{1}^{n}, S_{2}^{n} each known to one encoder in a strictly causal manner:

$$
\begin{aligned}
& X_{1, i}=f_{1, i}\left(m_{1}, S_{1}^{i-1}\right), \quad X_{2, i}=f_{2, i}\left(m_{2}, S_{2}^{i-1}\right), \quad i=1, \ldots, n \\
& \left(\hat{m}_{1}, \hat{m}_{2}\right)=g\left(Y^{n}\right)
\end{aligned}
$$

- Transmission is subject to input constraints $\frac{1}{n} \sum_{i=1}^{n} \phi_{k}\left(X_{k, i}\right) \leq \Gamma_{k}, \quad k=1,2$.

Problem Formulation

Outline

Problem Formulation

Strictly Causal SI

Causal SI

Summary

END

MAC with strictly causal side information (SI):

- Two independent state sequences S_{1}^{n}, S_{2}^{n} each known to one encoder in a strictly causal manner:

$$
\begin{aligned}
& X_{1, i}=f_{1, i}\left(m_{1}, S_{1}^{i-1}\right), \quad X_{2, i}=f_{2, i}\left(m_{2}, S_{2}^{i-1}\right), \quad i=1, \ldots, n \\
& \left(\hat{m}_{1}, \hat{m}_{2}\right)=g\left(Y^{n}\right)
\end{aligned}
$$

- Transmission is subject to input constraints $\frac{1}{n} \sum_{i=1}^{n} \phi_{k}\left(X_{k, i}\right) \leq \Gamma_{k}, \quad k=1,2$.
- Memoryless, time invariant channel and states $P_{Y \mid S, X_{1}, X_{2}}, P_{S_{1}}, P_{S_{2}}$.

Problem Formulation

Outline

Problem Formulation

Strictly Causal SI

Causal SI

Summary

END

MAC with strictly causal side information (SI):

We are interested in \mathcal{C}_{s-c}^{i}, the region of all achievable rate and cost pairs

$$
\left(R_{1}, R_{2}, \Gamma_{1}, \Gamma_{2}\right)
$$

Problem Formulation

Outline

Problem Formulation

Strictly Causal SI

Causal SI

Summary

END

MAC with strictly causal side information (SI):

We are interested in \mathcal{C}_{s-c}^{i}, the region of all achievable rate and cost pairs

$$
\left(R_{1}, R_{2}, \Gamma_{1}, \Gamma_{2}\right)
$$

$\mathcal{C}_{\mathrm{s}-\mathrm{c}}^{\mathrm{i}}\left(\Gamma_{1}, \Gamma_{2}\right)$ - the collection of all rate pairs $\left(R_{1}, R_{2}\right)$ such that

$$
\left(R_{1}, R_{2}, \Gamma_{1}, \Gamma_{2}\right) \in \mathcal{C}_{\mathrm{s}-\mathrm{c}}^{\mathrm{i}} .
$$

Problem Formulation

Outline

Problem Formulation

Strictly Causal SI

Causal SI

Summary

END

MAC with causal SI:

- Two state sequences S_{1}^{n}, S_{2}^{n}, each known to one encoder in a causal manner:

$$
\begin{aligned}
& X_{1, i}=f_{1, i}\left(m_{1}, S_{1}^{i}\right), \quad X_{2, i}=f_{2, i}\left(m_{2}, S_{2}^{i}\right), \quad i=1, \ldots, n \\
& \left(\hat{m}_{1}, \hat{m}_{2}\right)=g\left(Y^{n}\right)
\end{aligned}
$$

- Transmission is subject to input constraints $\frac{1}{n} \sum_{i=1}^{n} \phi_{k}\left(X_{k, i}\right) \leq \Gamma_{k}, \quad k=1,2$.

Memoryless, time invariant channel and state $P_{Y \mid S, X_{1}, X_{2}}, P_{S_{1}}, P_{S_{2}}$.

Problem Formulation

Outline

Problem Formulation

Strictly Causal SI

Causal SI

Summary

END

MAC with causal SI:

We are interested in $\mathcal{C}_{\text {cau }}^{i}$, the region of all achievable rate and cost pairs

$$
\left(R_{1}, R_{2}, \Gamma_{1}, \Gamma_{2}\right)
$$

$\mathcal{C}_{\text {cau }}^{\mathrm{i}}\left(\Gamma_{1}, \Gamma_{2}\right)$ - the collection of all rate pairs $\left(R_{1}, R_{2}\right)$ such that

$$
\left(R_{1}, R_{2}, \Gamma_{1}, \Gamma_{2}\right) \in \mathcal{C}_{\text {cau }}^{\mathrm{i}} .
$$

The single user channel with SC SI

- Strictly causal SI does not increase the capacity of the single user channel

Problem Formulation

Strictly Causal SI
Background

- MAC with independent SI
streams
- Main result
- Partial characterizations

Example

Causal SI

Summary

END

The single user channel with SC SI

- Strictly causal SI does not increase the capacity of the single user channel

Outline

Problem Formulation

Strictly Causal SI
Background

- MAC with independent SI
streams
- Main result
- Partial characterizations

Example

Causal SI

Summary
END

$$
\begin{aligned}
n R-n \epsilon_{n} & \leq I\left(M ; Y^{n}\right)=\sum_{i=1}^{n} I\left(M ; Y_{i} \mid Y^{i-1}\right) \\
& \leq \sum_{i=1}^{n} I\left(M, Y^{i-1} ; Y_{i}\right) \\
& \leq \sum_{i=1}^{n} I\left(M, Y^{i-1}, X_{i} ; Y_{i}\right) \\
& =\sum_{i=1}^{n} I\left(X_{i} ; Y_{i}\right) \\
& \leq \max _{P_{X}} I(X ; Y)=n C
\end{aligned}
$$

where C is the capacity without Sl .

The single user channel with SC SI

- Strictly causal SI does not increase the capacity of the single user channel (a reminiscent of the situation in feedback capacity)

The single user channel with SC SI

MAC with independent SI
streams

- Main result

Partial characterizations
Example

Causal SI

Summary

- Strictly causal SI does not increase the capacity of the single user channel (a reminiscent of the situation in feedback capacity)
- Transmission of the state (or compressed version thereof) to the other side is sub optimal: waste of precious rate, without increase in capacity.

The single user channel with SC SI

Problem Formulation

Strictly Causal SI Background

- MAC with independent SI streams
- Main result

Partial characterizations

- Example

Causal SI

Summary

END

- Strictly causal SI does not increase the capacity of the single user channel (a reminiscent of the situation in feedback capacity)
- Transmission of the state (or compressed version thereof) to the other side is sub optimal: waste of precious rate, without increase in capacity.

What about networks (BC, MAC)?

The broadcast channel with SC SI

- An example by Dueck (1980): A non degraded additive noise BC with feedback. The noise is common to the two channels.

Problem Formulation

Strictly Causal SI
Background

- MAC with independent SI
streams
Main result
Partial characterizations
Example

Causal SI

Summary

END

The broadcast channel with SC SI

- An example by Dueck (1980): A non degraded additive noise BC with feedback. The noise is common to the two channels.
\Rightarrow Equivalent to BC with strictly causal SI , where the state comprises the channel noise

Strictly Causal SI
Background

- MAC with independent SI
streams
- Main result
- Partial characterizations

Example

Causal SI

Summary
END

The broadcast channel with SC SI

- An example by Dueck (1980): A non degraded additive noise BC with feedback. The noise is common to the two channels.
> The encoder transmits the noise to the two users, uncompressed.

Strictly Causal SI
Background

- MAC with independent SI
streams
- Main result

Partial characterizations

- Example

Causal SI

Summary

END

The broadcast channel with SC SI

- An example by Dueck (1980): A non degraded additive noise BC with feedback. The noise is common to the two channels.

MAC with independent SI
streams

- Main result

Partial characterizations

- Example

Causal SI

Summary
> The encoder transmits the noise to the two users, uncompressed.

- Knowledge of the additive noise at the decoder facilitates decoding of the messages.

The broadcast channel with SC SI

- An example by Dueck (1980): A non degraded additive noise BC with feedback. The noise is common to the two channels.
> The encoder transmits the noise to the two users, uncompressed.
- Knowledge of the additive noise at the decoder facilitates decoding of the messages.
- Although precious rate is spent on transmitting the noise, the net effect is an increase in the capacity region.

The broadcast channel with SC SI

- An example by Dueck (1980): A non degraded additive noise BC with feedback. The noise is common to the two channels.
- The encoder transmits the noise to the two users, uncompressed.
- Knowledge of the additive noise at the decoder facilitates decoding of the messages.
- Although precious rate is spent on transmitting the noise, the net effect is an increase in the capacity region.
- Yields gains in capacity also when only lossy transmission of the noise is possible.

The broadcast channel with SC SI

- An example by Dueck (1980): A non degraded additive noise BC with feedback. The noise is common to the two channels.
- The encoder transmits the noise to the two users, uncompressed.
- Knowledge of the additive noise at the decoder facilitates decoding of the messages.
- Although precious rate is spent on transmitting the noise, the net effect is an increase in the capacity region.
- Yields gains in capacity also when only lossy transmission of the noise is possible.
- In the MAC: If the state is known to both users, they can cooperate in transmitting the noise (state) to the decoder. This strategy enlarges the capacity region of the MAC [Lapidoth \& Steinberg, IZS 2010].

MAC with SC common SI

[Lapidoth \& Steinberg, IZS2010]:

Outline

Problem Formulation

Strictly Causal SI
Background

- MAC with independent SI
streams
- Main result
- Partial characterizations Example

Causal SI

Summary
END

MAC with SC common SI

Outline

Problem Formulation

Strictly Causal SI
Background
MAC with independent SI
streams
Main result
Partial characterizations Example

Causal SI

Summary
$\mathcal{R}_{\mathrm{sc} \mathrm{c}}^{\text {common }}$ - the CH of all ($R_{1}, R_{2}, \Gamma_{1}, \Gamma_{2}$) satisfying

$$
\begin{aligned}
R_{1} & \leq I\left(X_{1} ; Y \mid X_{2}, U, V\right) \\
R_{2} & \leq I\left(X_{2} ; Y \mid X_{1}, U, V\right) \\
R_{1}+R_{2} & \leq I\left(X_{1}, X_{2} ; Y \mid U, V\right) \\
R_{1}+R_{2} & \leq I\left(X_{1}, X_{2}, V ; Y\right)-I(V ; S) \\
\Gamma_{k} & \geq \mathrm{E}\left[\phi_{k}\left(X_{k}\right)\right], \quad k=1,2
\end{aligned}
$$

for some joint distribution

$$
P_{U, V, X_{1}, X_{2}, S, Y}=P_{S} P_{X_{1} \mid U} P_{X_{2} \mid U} P_{U} P_{V \mid S} P_{Y \mid S, X_{1}, X_{2}} .
$$

MAC with SC common SI

Outline

Problem Formulation

Strictly Causal SI
Background

- MAC with independent SI
streams
Main result
- Partial characterizations Example

Causal SI

Summary

END
$\mathcal{R}_{\mathrm{s}-\mathrm{c}}^{\text {common }}$ - the CH of all ($R_{1}, R_{2}, \Gamma_{1}, \Gamma_{2}$) satisfying

$$
\begin{aligned}
R_{1} & \leq I\left(X_{1} ; Y \mid X_{2}, U, V\right) \\
R_{2} & \leq I\left(X_{2} ; Y \mid X_{1}, U, V\right) \\
R_{1}+R_{2} & \leq I\left(X_{1}, X_{2} ; Y \mid U, V\right) \\
R_{1}+R_{2} & \leq I\left(X_{1}, X_{2}, V ; Y\right)-I(V ; S) \\
\Gamma_{k} & \geq \mathrm{E}\left[\phi_{k}\left(X_{k}\right)\right], \quad k=1,2
\end{aligned}
$$

for some joint distribution

$$
P_{U, V, X_{1}, X_{2}, S, Y}=P_{S} P_{X_{1} \mid U} P_{X_{2} \mid U} P_{U} P_{V \mid S} P_{Y \mid S, X_{1}, X_{2}} .
$$

$$
\begin{aligned}
& X_{1}-U-X_{2} \\
& \left(X_{1}, U, X_{2}\right) \perp(V, S)
\end{aligned}
$$

MAC with SC common SI

Outline

Problem Formulation

Strictly Causal SI
Background

- MAC with independent SI
streams
Main result
- Partial characterizations Example

Causal SI

Summary

END
$\mathcal{R}_{\mathrm{s}-\mathrm{c}}^{\text {common }}$ - the CH of all ($R_{1}, R_{2}, \Gamma_{1}, \Gamma_{2}$) satisfying

$$
\begin{aligned}
R_{1} & \leq I\left(X_{1} ; Y \mid X_{2}, U, V\right) \\
R_{2} & \leq I\left(X_{2} ; Y \mid X_{1}, U, V\right) \\
R_{1}+R_{2} & \leq I\left(X_{1}, X_{2} ; Y \mid U, V\right) \\
R_{1}+R_{2} & \leq I\left(X_{1}, X_{2}, V ; Y\right)-I(V ; S) \\
\Gamma_{k} & \geq \mathrm{E}\left[\phi_{k}\left(X_{k}\right)\right], \quad k=1,2
\end{aligned}
$$

for some joint distribution

$$
P_{U, V, X_{1}, X_{2}, S, Y}=P_{S} P_{X_{1} \mid U} P_{X_{2} \mid U} P_{U} P_{V \mid S} P_{Y \mid S, X_{1}, X_{2}} .
$$

$$
\begin{aligned}
& X_{1}-U-X_{2} \\
& \left(X_{1}, U, X_{2}\right) \perp(V, S) \\
& V-S-Y
\end{aligned}
$$

MAC with SC common SI

$\mathcal{R}_{\mathrm{s} \text {-c }}^{\text {common }}$ - the CH of all $\left(R_{1}, R_{2}, \Gamma_{1}, \Gamma_{2}\right)$ satisfying

Outline

Problem Formulation

Strictly Causal SI
Background

- MAC with independent SI
streams
Main result
Partial characterizations Example

Causal SI

Summary

END

$$
\begin{aligned}
R_{1} & \leq I\left(X_{1} ; Y \mid X_{2}, U, V\right) \\
R_{2} & \leq I\left(X_{2} ; Y \mid X_{1}, U, V\right) \\
R_{1}+R_{2} & \leq I\left(X_{1}, X_{2} ; Y \mid U, V\right) \\
R_{1}+R_{2} & \leq I\left(X_{1}, X_{2}, V ; Y\right)-I(V ; S) \\
\Gamma_{k} & \geq \mathrm{E}\left[\phi_{k}\left(X_{k}\right)\right], \quad k=1,2
\end{aligned}
$$

Theorem 1 [L\&S, IZS 2010]
For the MAC with strictly causal SI commonly known by the two encoders, $\mathcal{R}_{\mathrm{s}-\mathrm{c}}^{\text {common }}$ is achievable.

MAC with SC common SI

$\mathcal{R}_{\mathrm{s}-\mathrm{c}}^{\text {common }}$ - the CH of all $\left(R_{1}, R_{2}, \Gamma_{1}, \Gamma_{2}\right)$ satisfying

Outline

Problem Formulation

Strictly Causal SI
Background

- MAC with independent SI
streams
- Main result

Partial characterizations

- Example

Causal SI

Summary

$$
\begin{aligned}
R_{1} & \leq I\left(X_{1} ; Y \mid X_{2}, U, V\right) \\
R_{2} & \leq I\left(X_{2} ; Y \mid X_{1}, U, V\right) \\
R_{1}+R_{2} & \leq I\left(X_{1}, X_{2} ; Y \mid U, V\right) \\
R_{1}+R_{2} & \leq I\left(X_{1}, X_{2}, V ; Y\right)-I(V ; S) \\
\Gamma_{k} & \geq \mathrm{E}\left[\phi_{k}\left(X_{k}\right)\right], \quad k=1,2
\end{aligned}
$$

Theorem 1 [L\&S, IZS 2010]
For the MAC with strictly causal SI commonly known by the two encoders, $\mathcal{R}_{s-c}^{\text {common }}$ is achievable.

Observation: $\mathcal{R}_{s-c}^{\text {common }}$ can be strictly larger than the capacity region without SI .

Background

We can write $\mathcal{R}_{s-c}^{\text {common }}$ as

- Outline

Problem Formulation

Strictly Causal SI
Background

- MAC with independent SI
streams
- Main result
- Partial characterizations Example

Causal SI

Summary

END

$$
\begin{aligned}
R_{1} & \leq I\left(X_{1} ; Y \mid X_{2}, U, V\right) \\
R_{2} & \leq I\left(X_{2} ; Y \mid X_{1}, U, V\right) \\
R_{1}+R_{2} & \leq I\left(X_{1}, X_{2} ; Y \mid U, V\right) \\
R_{0}+R_{1}+R_{2} & \leq I\left(X_{1}, X_{2} ; Y \mid V\right) \\
R_{0} & \geq I(V ; S)-I(V ; Y) . \\
\Gamma_{k} & \geq \mathrm{E}\left[\phi_{k}\left(X_{k}\right)\right], \quad k=1,2
\end{aligned}
$$

Background

Outline

Strictly Causal SI
Background

- MAC with independent SI
streams
Main result
Partial characterizations Example

Causal SI

Summary

Problem Formulation

We can write $\mathcal{R}_{\mathrm{s}-\mathrm{c}}^{\text {common }}$ as

$$
\begin{aligned}
R_{1} & \leq I\left(X_{1} ; Y \mid X_{2}, U, V\right) \\
R_{2} & \leq I\left(X_{2} ; Y \mid X_{1}, U, V\right) \\
R_{1}+R_{2} & \leq I\left(X_{1}, X_{2} ; Y \mid U, V\right) \\
R_{0}+R_{1}+R_{2} & \leq I\left(X_{1}, X_{2} ; Y \mid V\right) \\
R_{0} & \geq I(V ; S)-I(V ; Y) . \\
\Gamma_{k} & \geq \mathrm{E}\left[\phi_{k}\left(X_{k}\right)\right], \quad k=1,2
\end{aligned}
$$

Based on MAC with common messages + block Markov scheme:

Background

Outline

Problem Formulation

Strictly Causal SI
Background
MAC with independent SI
streams

- Main result

Partial characterizations
Example

Causal SI

Summary

END
\qquad SI

We can write $\mathcal{R}_{\mathrm{s}-\mathrm{c}}^{\text {common }}$ as
\square

Background

Outline

Problem Formulation

Strictly Causal SI Background

- MAC with independent SI streams
- Main result

Partial characterizations
Example

Causal SI

Summary

END
\qquad

We can write $\mathcal{R}_{\mathrm{s}-\mathrm{c}}^{\text {common }}$ as

$$
\begin{aligned}
R_{1} & \leq I\left(X_{1} ; Y \mid X_{2}, U, V\right) \\
R_{2} & \leq I\left(X_{2} ; Y \mid X_{1}, U, V\right) \\
R_{1}+R_{2} & \leq I\left(X_{1}, X_{2} ; Y \mid U, V\right) \\
R_{0}+R_{1}+R_{2} & \leq I\left(X_{1}, X_{2} ; Y \mid V\right) \\
R_{0} & \geq I(V ; S)-I(V ; Y) . \\
\Gamma_{k} & \geq \mathrm{E}\left[\phi_{k}\left(X_{k}\right)\right], \quad k=1,2
\end{aligned}
$$

Based on MAC with common messages + block Markov scheme:

- The state sequence S^{n} is compressed by a Wyner-Ziv scheme, with coding random variable V, and decoder side information Y^{n}.
- The compressed state is transmitted to the decoder in the next transmission block as a common message, together with the independent messages m_{1}, m_{2}.

Background

We can write $\mathcal{R}_{s-c}^{\text {common }}$ as

Outline
Problem Formulation

Strictly Causal SI
Background

- MAC with independent SI
streams
- Main result

Partial characterizations
Example

Causal SI

Summary
\qquad
SI
\square

Based on MAC with common messages + block Markov scheme:

- The state sequence S^{n} is compressed by a Wyner-Ziv scheme, with coding random variable V, and decoder side information Y^{n}.
- The compressed state is transmitted to the decoder in the next transmission block as a common message, together with the independent messages m_{1}, m_{2}.
- Cooperation is possible, since the state is common.

MAC with independent SI streams

Back to our problem:

Outine

Problem Formulation

Strictly Causal SI
Background

- MAC with independent SI
streams
- Main result
- Partial characterizations Example

Causal SI

Summary

MAC with independent SI streams

Back to our problem:

Outline

Problem Formulation

Strictly Causal SI
Background

- MAC with independent SI
streams
- Main result

Partial characterizations
Example

Causal SI

Summary

END

- The two encoders cannot establish cooperation of any kind

MAC with independent SI streams

Back to our problem:

Outline

Problem Formulation

Strictly Causal SI
Background

- MAC with independent SI
streams
- Main result

Partial characterizations
Example

Causal SI

Summary

END

- The two encoders cannot establish cooperation of any kind Joint transmission of the states is not possible.

MAC with independent SI streams

Back to our problem:

Outline

Problem Formulation

Strictly Causal SI
Background

- MAC with independent SI
streams
- Main result

Partial characterizations
Example

Causal SI

Summary

END

- The two encoders cannot establish cooperation of any kind Joint transmission of the states is not possible.
- Each of the encoders is working alone - like in the single user channel.

MAC with independent SI streams

Back to our problem:

Outline

Problem Formulation

Strictly Causal SI
Background

- MAC with independent SI
streams
- Main result

Partial characterizations

- Example

Causal SI

Summary

END

- The two encoders cannot establish cooperation of any kind Joint transmission of the states is not possible.
- Each of the encoders is working alone - like in the single user channel.
- In this setup, is SC SI beneficial at all?

MAC with independent SI streams

Back to our problem:

Outline

Problem Formulation

Strictly Causal SI

- Background
- MAC with independent SI
streams
- Main result
- Partial characterizations

Example

Causal SI

Summary

END

- The two encoders cannot establish cooperation of any kind Joint transmission of the states is not possible.
- Each of the encoders is working alone - like in the single user channel.
- In this setup, is SC SI beneficial at all?
- If it is beneficial, is it a good idea to compress and transmit the states to the other side?

Main result

- Outline

Problem Formulation

Strictly Causal SI

- Background
- MAC with independent SI streams
- Main result

Partial characterizations - Example

Causal SI

Summary
\qquad
SI

Let $\mathcal{R}_{\mathrm{sc}}^{\mathrm{i}}$ be the convex hull of the collection of all ($R_{1}, R_{2}, \Gamma_{1}, \Gamma_{2}$) satisfying

Main result

Let $\mathcal{R}_{\mathrm{sc}}^{\mathrm{i}}$ be the convex hull of the collection of all $\left(R_{1}, R_{2}, \Gamma_{1}, \Gamma_{2}\right)$ satisfying

Outine

Problem Formulation

Strictly Causal SI

- Background
- MAC with independent SI streams
- Main result
- Partial characterizations

Example

Causal SI

Summary
END

$$
\begin{aligned}
0 \leq R_{1} & \leq I\left(X_{1} ; Y \mid X_{2}, V_{1}, V_{2}\right)-I\left(V_{1} ; S_{1} \mid Y, V_{2}\right) \\
0 \leq R_{2} & \leq I\left(X_{2} ; Y \mid X_{1}, V_{1}, V_{2}\right)-I\left(V_{2} ; S_{2} \mid Y, V_{1}\right) \\
R_{1}+R_{2} & \leq I\left(X_{1}, X_{2} ; Y \mid V_{1}, V_{2}\right)-I\left(V_{1}, V_{2} ; S_{1}, S_{2} \mid Y\right) \\
\Gamma_{k} & \geq \mathbb{E} \phi_{k}\left(X_{k}\right), \quad k=1,2
\end{aligned}
$$

$$
\begin{gathered}
V_{1}-S_{1}-\left(V_{2}, Y, S_{2}\right) \\
V_{2}-S_{2}-\left(V_{1}, Y, S_{1}\right) \\
\left(V_{1}, V_{2}\right)-\left(S_{1}, S_{2}\right)-Y
\end{gathered}
$$

Main result

- Outline

Problem Formulation

Strictly Causal SI
Background

- MAC with independent SI streams
- Main result

Partial characterizations
Example

Causal SI

Summary

END
\qquad
SI

Let $\mathcal{R}_{\mathrm{sc}}^{\mathrm{i}}$ be the convex hull of the collection of all ($R_{1}, R_{2}, \Gamma_{1}, \Gamma_{2}$) satisfying
\square

$$
\begin{aligned}
0 \leq R_{1} & \leq I\left(X_{1} ; Y \mid X_{2}, V_{1}, V_{2}\right)-I\left(V_{1} ; S_{1} \mid Y, V_{2}\right) \\
0 \leq R_{2} & \leq I\left(X_{2} ; Y \mid X_{1}, V_{1}, V_{2}\right)-I\left(V_{2} ; S_{2} \mid Y, V_{1}\right) \\
R_{1}+R_{2} & \leq I\left(X_{1}, X_{2} ; Y \mid V_{1}, V_{2}\right)-I\left(V_{1}, V_{2} ; S_{1}, S_{2} \mid Y\right) \\
\Gamma_{k} & \geq \mathbb{E} \phi_{k}\left(X_{k}\right), \quad k=1,2
\end{aligned}
$$

$$
\begin{gathered}
V_{1}-S_{1}-\left(V_{2}, Y, S_{2}\right) \\
V_{2}-S_{2}-\left(V_{1}, Y, S_{1}\right) \\
\left(V_{1}, V_{2}\right)-\left(S_{1}, S_{2}\right)-Y
\end{gathered}
$$

X_{1}, X_{2} are independent of each other and of the quadruple ($V_{1}, V_{2}, S_{1}, S_{2}$).

Main result

Let $\mathcal{R}_{\mathrm{sc}}^{\mathrm{i}}$ be the convex hull of the collection of all ($R_{1}, R_{2}, \Gamma_{1}, \Gamma_{2}$) satisfying

Outline

Problem Formulation

Strictly Causal SI
Background

- MAC with independent SI streams
- Main result
- Partial characterizations

Example

Causal SI

Summary

END
\qquad
SI
(

$$
\begin{aligned}
0 \leq R_{1} & \leq I\left(X_{1} ; Y \mid X_{2}, V_{1}, V_{2}\right)-I\left(V_{1} ; S_{1} \mid Y, V_{2}\right) \\
0 \leq R_{2} & \leq I\left(X_{2} ; Y \mid X_{1}, V_{1}, V_{2}\right)-I\left(V_{2} ; S_{2} \mid Y, V_{1}\right) \\
R_{1}+R_{2} & \leq I\left(X_{1}, X_{2} ; Y \mid V_{1}, V_{2}\right)-I\left(V_{1}, V_{2} ; S_{1}, S_{2} \mid Y\right) \\
\Gamma_{k} & \geq \mathbb{E} \phi_{k}\left(X_{k}\right), \quad k=1,2
\end{aligned}
$$

$$
\begin{gathered}
V_{1}-S_{1}-\left(V_{2}, Y, S_{2}\right) \\
V_{2}-S_{2}-\left(V_{1}, Y, S_{1}\right) \\
\left(V_{1}, V_{2}\right)-\left(S_{1}, S_{2}\right)-Y
\end{gathered}
$$

X_{1}, X_{2} are independent of each other and of the quadruple ($V_{1}, V_{2}, S_{1}, S_{2}$).

$$
\left(V_{1}, S_{1}\right) \perp\left(V_{2}, S_{2}\right)
$$

Main result

Outline

Problem Formulation

Strictly Causal SI
Background
MAC with independent SI streams
Main result
Partial characterizations
Example

Causal SI

Summary

END

$$
\begin{aligned}
0 \leq R_{1} & \leq I\left(X_{1} ; Y \mid X_{2}, V_{1}, V_{2}\right)-I\left(V_{1} ; S_{1} \mid Y, V_{2}\right) \\
0 \leq R_{2} & \leq I\left(X_{2} ; Y \mid X_{1}, V_{1}, V_{2}\right)-I\left(V_{2} ; S_{2} \mid Y, V_{1}\right) \\
R_{1}+R_{2} & \leq I\left(X_{1}, X_{2} ; Y \mid V_{1}, V_{2}\right)-I\left(V_{1}, V_{2} ; S_{1}, S_{2} \mid Y\right) \\
\Gamma_{k} & \geq \mathbb{E} \phi_{k}\left(X_{k}\right), \quad k=1,2
\end{aligned}
$$

Theorem 2 (Strictly-Causal, independent SI streams)

$$
\mathcal{R}_{\mathrm{sc}}^{\mathrm{i}} \subseteq \mathcal{C}_{\mathrm{sc}}^{i}
$$

Main result

- Outline

Problem Formulation

Strictly Causal SI
Background

- MAC with independent SI
streams
- Main result

Partial characterizations
Example

Causal SI

Summary

END

Main result

Outline

Problem Formulation

Strictly Causal SI
Background
MAC with independent SI
streams

- Main result

Partial characterizations
Example

Causal SI

Summary

END

$$
\begin{aligned}
0 \leq R_{1} & \leq I\left(X_{1} ; Y \mid X_{2}, V_{1}, V_{2}\right)-I\left(V_{1} ; S_{1} \mid Y, V_{2}\right) \\
0 \leq R_{2} & \leq I\left(X_{2} ; Y \mid X_{1}, V_{1}, V_{2}\right)-I\left(V_{2} ; S_{2} \mid Y, V_{1}\right) \\
R_{1}+R_{2} & \leq I\left(X_{1}, X_{2} ; Y \mid V_{1}, V_{2}\right)-I\left(V_{1}, V_{2} ; S_{1}, S_{2} \mid Y\right) \\
\Gamma_{k} & \geq \mathbb{E} \phi_{k}\left(X_{k}\right), \quad k=1,2
\end{aligned}
$$

A block Markov scheme:

Main result

Outline

Problem Formulation

Strictly Causal SI
Background
MAC with independent SI
streams

- Main result

Partial characterizations
Example

Causal SI

Summary

END

$$
\begin{aligned}
0 \leq R_{1} & \leq I\left(X_{1} ; Y \mid X_{2}, V_{1}, V_{2}\right)-I\left(V_{1} ; S_{1} \mid Y, V_{2}\right) \\
0 \leq R_{2} & \leq I\left(X_{2} ; Y \mid X_{1}, V_{1}, V_{2}\right)-I\left(V_{2} ; S_{2} \mid Y, V_{1}\right) \\
R_{1}+R_{2} & \leq I\left(X_{1}, X_{2} ; Y \mid V_{1}, V_{2}\right)-I\left(V_{1}, V_{2} ; S_{1}, S_{2} \mid Y\right) \\
\Gamma_{k} & \geq \mathbb{E} \phi_{k}\left(X_{k}\right), \quad k=1,2
\end{aligned}
$$

A block Markov scheme:

- The state sequences S_{1}^{n}, S_{2}^{n} are compressed by a distributed Wyner-Ziv scheme, with coding random variable V_{1}, V_{2} and decoder side information Y^{n}.

Main result

Outline

Problem Formulation

Strictly Causal SI
Background

- MAC with independent SI
streams
- Main result

Partial characterizations
Example

Causal SI

Summary END

$$
\begin{aligned}
0 \leq R_{1} & \leq I\left(X_{1} ; Y \mid X_{2}, V_{1}, V_{2}\right)-I\left(V_{1} ; S_{1} \mid Y, V_{2}\right) \\
0 \leq R_{2} & \leq I\left(X_{2} ; Y \mid X_{1}, V_{1}, V_{2}\right)-I\left(V_{2} ; S_{2} \mid Y, V_{1}\right) \\
R_{1}+R_{2} & \leq I\left(X_{1}, X_{2} ; Y \mid V_{1}, V_{2}\right)-I\left(V_{1}, V_{2} ; S_{1}, S_{2} \mid Y\right) \\
\Gamma_{k} & \geq \mathbb{E} \phi_{k}\left(X_{k}\right), \quad k=1,2
\end{aligned}
$$

A block Markov scheme:

- The state sequences S_{1}^{n}, S_{2}^{n} are compressed by a distributed Wyner-Ziv scheme, with coding random variable V_{1}, V_{2} and decoder side information Y^{n}.

$$
\left(V_{1}, V_{2}\right)-\left(S_{1}, S_{2}\right)-Y
$$

Main result

Outline

Problem Formulation

Strictly Causal SI
Background
MAC with independent SI
streams

- Main result

Partial characterizations
Example

Causal SI

Summary

END

$$
\begin{aligned}
0 \leq R_{1} & \leq I\left(X_{1} ; Y \mid X_{2}, V_{1}, V_{2}\right)-I\left(V_{1} ; S_{1} \mid Y, V_{2}\right) \\
0 \leq R_{2} & \leq I\left(X_{2} ; Y \mid X_{1}, V_{1}, V_{2}\right)-I\left(V_{2} ; S_{2} \mid Y, V_{1}\right) \\
R_{1}+R_{2} & \leq I\left(X_{1}, X_{2} ; Y \mid V_{1}, V_{2}\right)-I\left(V_{1}, V_{2} ; S_{1}, S_{2} \mid Y\right) \\
\Gamma_{k} & \geq \mathbb{E} \phi_{k}\left(X_{k}\right), \quad k=1,2
\end{aligned}
$$

A block Markov scheme:

- The state sequences S_{1}^{n}, S_{2}^{n} are compressed by a distributed Wyner-Ziv scheme, with coding random variable V_{1}, V_{2} and decoder side information Y^{n}.

$$
\left(V_{1}, V_{2}\right)-\left(S_{1}, S_{2}\right)-Y
$$

- The compressed states are transmitted to the decoder in the next transmission block as independent codewords, together with the independent messages m_{1}, m_{2}.

Main result

Outline

Problem Formulation

Strictly Causal SI
Background
MAC with independent SI
streams

- Main result

Partial characterizations
Example

Causal SI

Summary

END

$$
\begin{aligned}
0 \leq R_{1} & \leq I\left(X_{1} ; Y \mid X_{2}, V_{1}, V_{2}\right)-I\left(V_{1} ; S_{1} \mid Y, V_{2}\right) \\
0 \leq R_{2} & \leq I\left(X_{2} ; Y \mid X_{1}, V_{1}, V_{2}\right)-I\left(V_{2} ; S_{2} \mid Y, V_{1}\right) \\
R_{1}+R_{2} & \leq I\left(X_{1}, X_{2} ; Y \mid V_{1}, V_{2}\right)-I\left(V_{1}, V_{2} ; S_{1}, S_{2} \mid Y\right) \\
\Gamma_{k} & \geq \mathbb{E} \phi_{k}\left(X_{k}\right), \quad k=1,2
\end{aligned}
$$

A block Markov scheme:

- The state sequences S_{1}^{n}, S_{2}^{n} are compressed by a distributed Wyner-Ziv scheme, with coding random variable V_{1}, V_{2} and decoder side information Y^{n}.

$$
\left(V_{1}, V_{2}\right)-\left(S_{1}, S_{2}\right)-Y
$$

- The compressed states are transmitted to the decoder in the next transmission block as independent codewords, together with the independent messages m_{1}, m_{2}.

$$
X_{1} \perp X_{2}, \quad \text { independent of }\left(V_{1}, V_{2}, S_{1}, S_{2}\right) .
$$

Main result

Outline

Problem Formulation

Strictly Causal SI
Background
MAC with independent SI
streams

- Main result

Partial characterizations
Example

Causal SI

Summary

END

$$
\begin{aligned}
0 \leq R_{1} & \leq I\left(X_{1} ; Y \mid X_{2}, V_{1}, V_{2}\right)-I\left(V_{1} ; S_{1} \mid Y, V_{2}\right) \\
0 \leq R_{2} & \leq I\left(X_{2} ; Y \mid X_{1}, V_{1}, V_{2}\right)-I\left(V_{2} ; S_{2} \mid Y, V_{1}\right) \\
R_{1}+R_{2} & \leq I\left(X_{1}, X_{2} ; Y \mid V_{1}, V_{2}\right)-I\left(V_{1}, V_{2} ; S_{1}, S_{2} \mid Y\right) \\
\Gamma_{k} & \geq \mathbb{E} \phi_{k}\left(X_{k}\right), \quad k=1,2
\end{aligned}
$$

A block Markov scheme:

- The state sequences S_{1}^{n}, S_{2}^{n} are compressed by a distributed Wyner-Ziv scheme, with coding random variable V_{1}, V_{2} and decoder side information Y^{n}.

$$
\left(V_{1}, V_{2}\right)-\left(S_{1}, S_{2}\right)-Y
$$

- The compressed states are transmitted to the decoder in the next transmission block as independent codewords, together with the independent messages m_{1}, m_{2}.

$$
X_{1} \perp X_{2}, \quad \text { independent of }\left(V_{1}, V_{2}, S_{1}, S_{2}\right) \text {. }
$$

- The two codes are decoupled.

Partial characterizations

Two propositions - about the sum rate, and about the asymmetric case.

Outine

Problem Formulation

Strictly Causal SI

- Background
- MAC with independent SI
streams
- Main result
- Partial characterizations

Example

Causal SI

Summary

END

Partial characterizations

Strictly Causal SI
Background

- MAC with independent SI streams
Main result
- Partial characterizations Example

Causal SI

Summary

Two propositions - about the sum rate, and about the asymmetric case.
Proposition 1 Strictly-causal independent SI does not increase the sum-rate capacity:

$$
\mathcal{C}_{\Sigma, s-c}^{i}\left(\Gamma_{1}, \Gamma_{2}\right)=\max I\left(X_{1}, X_{2} ; Y\right),
$$

where the maximum is over all product distributions $P_{X_{1}} P_{X_{2}}$ satisfying the input constraints

$$
\mathbb{E} \phi_{k}\left(X_{k}\right) \leq \Gamma_{k}, \quad k=1,2 .
$$

Partial characterizations

Strictly Causal SI

- Background
- MAC with independent SI
streams
- Main result
- Partial characterizations

Example

Causal SI

Summary

The asymmetric case:
Proposition 2 Let S_{2} be deterministic. Then the maximal rate of User 1 with strictly causal SI is equal to its single user capacity without SI

$$
\max \left\{R_{1}:\left(R_{1}, 0\right) \in \mathcal{C}_{s-\mathrm{c}}^{\mathrm{i}}\left(\Gamma_{1}, \Gamma_{2}\right)\right\}=\max I\left(X_{1} ; Y \mid X_{2}\right),
$$

where the maximum in the right hand side is over all $P_{X_{1}} P_{X_{2}}$ satisfying the input constraints

$$
\mathbb{E} \phi_{k}\left(X_{k}\right) \leq \Gamma_{k}, \quad k=1,2 .
$$

Example

The Gaussian MAC where the state S_{1} comprises the channel noise, and S_{2} is null:

Outline

Problem Formulation

Strictly Causal SI
Background

- MAC with independent SI
streams
- Main result
- Partial characterizations
- Example

Causal SI

Summary
END

$$
\begin{aligned}
& Y=X_{1}+X_{2}+S_{1}, \quad S_{1} \sim \mathcal{N}\left(0, \sigma_{s_{1}}^{2}\right) \\
& \mathrm{E}\left[X_{1}^{2}\right] \leq \Gamma_{1}, \quad \mathrm{E}\left[X_{2}^{2}\right] \leq \Gamma_{2} .
\end{aligned}
$$

Example

Outline

Problem Formulation

Strictly Causal SI
Background

- MAC with independent SI
streams
- Main result

Partial characterizations

- Example

Causal SI

Summary

END

The Gaussian MAC where the state S_{1} comprises the channel noise, and S_{2} is null:

$$
\begin{aligned}
& Y=X_{1}+X_{2}+S_{1}, \quad S_{1} \sim \mathcal{N}\left(0, \sigma_{s_{1}}^{2}\right) \\
& \mathrm{E}\left[X_{1}^{2}\right] \leq \Gamma_{1}, \quad \mathrm{E}\left[X_{2}^{2}\right] \leq \Gamma_{2}
\end{aligned}
$$

$\mathcal{C}_{\mathrm{s}-\mathrm{c}}^{\mathrm{i}}\left(\Gamma_{1}, \Gamma_{2}\right)$ is the collection of all rate-pairs $\left(R_{1}, R_{2}\right)$ satisfying

$$
\begin{aligned}
R_{1} & \leq \frac{1}{2} \log \left(1+\frac{\Gamma_{1}}{\sigma_{s_{1}}^{2}}\right) \\
R_{1}+R_{2} & \leq \frac{1}{2} \log \left(1+\frac{\Gamma_{1}+\Gamma_{2}}{\sigma_{s_{1}}^{2}}\right)
\end{aligned}
$$

Example

Outline

Problem Formulation

Strictly Causal SI
Background
MAC with independent SI
streams

- Main result

Partial characterizations

- Example

Causal SI

Summary

END

The Gaussian MAC where the state S_{1} comprises the channel noise, and S_{2} is null:

$$
\begin{aligned}
& Y=X_{1}+X_{2}+S_{1}, \quad S_{1} \sim \mathcal{N}\left(0, \sigma_{s_{1}}^{2}\right) \\
& \mathrm{E}\left[X_{1}^{2}\right] \leq \Gamma_{1}, \quad \mathrm{E}\left[X_{2}^{2}\right] \leq \Gamma_{2} .
\end{aligned}
$$

$\mathcal{C}_{\mathrm{s}-\mathrm{c}}^{\mathrm{i}}\left(\Gamma_{1}, \Gamma_{2}\right)$ is the collection of all rate-pairs $\left(R_{1}, R_{2}\right)$ satisfying

$$
\begin{aligned}
R_{1} & \leq \frac{1}{2} \log \left(1+\frac{\Gamma_{1}}{\sigma_{s_{1}}^{2}}\right) \\
R_{1}+R_{2} & \leq \frac{1}{2} \log \left(1+\frac{\Gamma_{1}+\Gamma_{2}}{\sigma_{s_{1}}^{2}}\right) .
\end{aligned}
$$

Proof:

Direct part: good choice of random variables in $\mathcal{R}_{\mathrm{sc}}^{i}$.

Example

Outline

Problem Formulation

Strictly Causal SI
Background
MAC with independent SI
streams

- Main result

Partial characterizations

- Example

Causal SI

Summary

END

The Gaussian MAC where the state S_{1} comprises the channel noise, and S_{2} is null:

$$
\begin{gathered}
Y=X_{1}+X_{2}+S_{1}, \quad S_{1} \sim \mathcal{N}\left(0, \sigma_{s_{1}}^{2}\right) \\
\mathrm{E}\left[X_{1}^{2}\right] \leq \Gamma_{1}, \quad \mathrm{E}\left[X_{2}^{2}\right] \leq \Gamma_{2} . \\
\mathcal{C}_{s-\mathrm{c}}^{\mathrm{i}}\left(\Gamma_{1}, \Gamma_{2}\right) \text { is the collection of all rate-pairs }\left(R_{1}, R_{2}\right) \text { satisfying }
\end{gathered}
$$

$$
\begin{aligned}
R_{1} & \leq \frac{1}{2} \log \left(1+\frac{\Gamma_{1}}{\sigma_{s_{1}}^{2}}\right) \\
R_{1}+R_{2} & \leq \frac{1}{2} \log \left(1+\frac{\Gamma_{1}+\Gamma_{2}}{\sigma_{s_{1}}^{2}}\right) .
\end{aligned}
$$

Proof:

Direct part: good choice of random variables in $\mathcal{R}_{\mathrm{sc}}^{i}$.
Converse: use Propositions 1 and 2.

Example

- Outline

Problem Formulation

Strictly Causal SI
Background
MAC with independent SI
streams

- Main result
- Partial characterizations

Example

Causal SI

Summary

END

Example

Outline

Problem Formulation

Strictly Causal SI
Background
MAC with independent SI
streams

- Main result
- Partial characterizations

Example

Causal SI

Summary

END

- User 1 knows the noise in a strictly causal manner, but cannot utilize it to increase his own rate.

Example

Outline

Problem Formulation

Strictly Causal SI
Background
MAC with independent SI
streams
Main result

- Partial characterizations

Example

Causal SI

Summary

END

- User 1 knows the noise in a strictly causal manner, but cannot utilize it to increase his own rate.
- He can use it to increase the rate of User 2.

MAC with causal SI

The region we had for the strictly causal case is still achievable

Outline

Problem Formulation

Strictly Causal SI

Causal SI

- MAC with causal SI - main result
- The naïve approach
- Example

$$
\begin{aligned}
0 \leq R_{1} & \leq I\left(X_{1} ; Y \mid X_{2}, V_{1}, V_{2}\right)-I\left(V_{1} ; S_{1} \mid Y, V_{2}\right) \\
0 \leq R_{2} & \leq I\left(X_{2} ; Y \mid X_{1}, V_{1}, V_{2}\right)-I\left(V_{2} ; S_{2} \mid Y, V_{1}\right) \\
R_{1}+R_{2} & \leq I\left(X_{1}, X_{2} ; Y \mid V_{1}, V_{2}\right)-I\left(V_{1}, V_{2} ; S_{1}, S_{2} \mid Y\right) \\
\Gamma_{k} & \geq \mathbb{E} \phi_{k}\left(X_{k}\right), \quad k=1,2
\end{aligned}
$$

MAC with causal SI

The region we had for the strictly causal case is still achievable

- Outline

Problem Formulation

Strictly Causal SI

Causal SI

- MAC with causal SI - main
result
- The naïve approach
- Example

Summary

END

$$
\begin{aligned}
0 \leq R_{1} & \leq I\left(X_{1} ; Y \mid X_{2}, V_{1}, V_{2}\right)-I\left(V_{1} ; S_{1} \mid Y, V_{2}\right) \\
0 \leq R_{2} & \leq I\left(X_{2} ; Y \mid X_{1}, V_{1}, V_{2}\right)-I\left(V_{2} ; S_{2} \mid Y, V_{1}\right) \\
R_{1}+R_{2} & \leq I\left(X_{1}, X_{2} ; Y \mid V_{1}, V_{2}\right)-I\left(V_{1}, V_{2} ; S_{1}, S_{2} \mid Y\right) \\
\Gamma_{k} & \geq \mathbb{E} \phi_{k}\left(X_{k}\right), \quad k=1,2
\end{aligned}
$$

with the Markov conditions

$$
\begin{gathered}
V_{1}-S_{1}-\left(V_{2}, Y, S_{2}\right) \\
V_{2}-S_{2}-\left(V_{1}, Y, S_{1}\right) \\
\left(V_{1}, V_{2}\right)-\left(S_{1}, S_{2}\right)-Y \\
X_{1} \perp X_{2}, \quad\left(X_{1}, X_{2}\right) \perp\left(V_{1}, V_{2}, S_{1}, S_{2}\right) .
\end{gathered}
$$

MAC with causal SI

The region we had for the strictly causal case is still achievable

Outline

Problem Formulation

Strictly Causal SI

Causal SI
D MAC with causal SI - main
result
The naïve approach

- Example

Summary

END

$$
\begin{aligned}
0 \leq R_{1} & \leq I\left(X_{1} ; Y \mid X_{2}, V_{1}, V_{2}\right)-I\left(V_{1} ; S_{1} \mid Y, V_{2}\right) \\
0 \leq R_{2} & \leq I\left(X_{2} ; Y \mid X_{1}, V_{1}, V_{2}\right)-I\left(V_{2} ; S_{2} \mid Y, V_{1}\right) \\
R_{1}+R_{2} & \leq I\left(X_{1}, X_{2} ; Y \mid V_{1}, V_{2}\right)-I\left(V_{1}, V_{2} ; S_{1}, S_{2} \mid Y\right) \\
\Gamma_{k} & \geq \mathbb{E} \phi_{k}\left(X_{k}\right), \quad k=1,2
\end{aligned}
$$

with the Markov conditions

$$
\begin{gathered}
V_{1}-S_{1}-\left(V_{2}, Y, S_{2}\right) \\
V_{2}-S_{2}-\left(V_{1}, Y, S_{1}\right) \\
\left(V_{1}, V_{2}\right)-\left(S_{1}, S_{2}\right)-Y \\
X_{1} \perp X_{2}, \quad\left(X_{1}, X_{2}\right) \perp\left(V_{1}, V_{2}, S_{1}, S_{2}\right) .
\end{gathered}
$$

But now, X_{1}, X_{2} can depend on S.

MAC with causal SI

The region we had for the strictly causal case is still achievable

Outline

Problem Formulation

Strictly Causal SI

Causal SI

- MAC with causal SI - main
result
- The naïve approach
- Example

Summary

END

$$
\begin{aligned}
0 \leq R_{1} & \leq I\left(X_{1} ; Y \mid X_{2}, V_{1}, V_{2}\right)-I\left(V_{1} ; S_{1} \mid Y, V_{2}\right) \\
0 \leq R_{2} & \leq I\left(X_{2} ; Y \mid X_{1}, V_{1}, V_{2}\right)-I\left(V_{2} ; S_{2} \mid Y, V_{1}\right) \\
R_{1}+R_{2} & \leq I\left(X_{1}, X_{2} ; Y \mid V_{1}, V_{2}\right)-I\left(V_{1}, V_{2} ; S_{1}, S_{2} \mid Y\right) \\
\Gamma_{k} & \geq \mathbb{E} \phi_{k}\left(X_{k}\right), \quad k=1,2
\end{aligned}
$$

with the Markov conditions

$$
\begin{gathered}
V_{1}-S_{1}-\left(V_{2}, Y, S_{2}\right) \\
V_{2}-S_{2}-\left(V_{1}, Y, S_{1}\right) \\
\left(V_{1}, V_{2}\right)-\left(S_{1}, S_{2}\right)-Y \\
X_{1} \perp X_{2}, \quad\left(X_{1}, X_{2}\right) \perp\left(V_{1}, V_{2}, S_{1}, S_{2}\right) .
\end{gathered}
$$

But now, X_{1}, X_{2} can depend on S.
\Rightarrow Use Shannon strategies on top of our block Markov scheme.

MAC with causal SI

The region we had for the strictly causal case is still achievable

Outline

Problem Formulation

Strictly Causal SI

Causal SI

- MAC with causal SI - main
result
- The naïve approach
- Example

Summary

$$
\begin{aligned}
0 \leq R_{1} & \leq I\left(X_{1} ; Y \mid X_{2}, V_{1}, V_{2}\right)-I\left(V_{1} ; S_{1} \mid Y, V_{2}\right) \\
0 \leq R_{2} & \leq I\left(X_{2} ; Y \mid X_{1}, V_{1}, V_{2}\right)-I\left(V_{2} ; S_{2} \mid Y, V_{1}\right) \\
R_{1}+R_{2} & \leq I\left(X_{1}, X_{2} ; Y \mid V_{1}, V_{2}\right)-I\left(V_{1}, V_{2} ; S_{1}, S_{2} \mid Y\right) \\
\Gamma_{k} & \geq \mathbb{E} \phi_{k}\left(X_{k}\right), \quad k=1,2
\end{aligned}
$$

with the Markov conditions

$$
\begin{gathered}
V_{1}-S_{1}-\left(V_{2}, Y, S_{2}\right) \\
V_{2}-S_{2}-\left(V_{1}, Y, S_{1}\right) \\
\left(V_{1}, V_{2}\right)-\left(S_{1}, S_{2}\right)-Y \\
X_{1} \perp X_{2}, \quad\left(X_{1}, X_{2}\right) \perp\left(V_{1}, V_{2}, S_{1}, S_{2}\right) .
\end{gathered}
$$

But now, X_{1}, X_{2} can depend on S.
Replace (X_{1}, X_{2}) by (U_{1}, U_{2}) independent of (S_{1}, S_{2}), and let

$$
P_{X_{1} \mid U_{1}, S_{1}}, \quad P_{X_{2} \mid U_{2}, S_{2}}
$$

Main result

Outline

Problem Formulation

Strictly Causal SI

Causal SI
MAC with causal SI - main
result

- The naïve approach
- Example

Summary
$\mathcal{R}_{\text {cau }}^{\mathrm{i}}$ - the CH of all ($R_{1}, R_{2}, \Gamma_{1}, \Gamma_{2}$) satisfying

$$
\begin{aligned}
0 \leq R_{1} & \leq I\left(U_{1} ; Y \mid U_{2}, V_{1}, V_{2}\right)-I\left(V_{1} ; S_{1} \mid Y, V_{2}\right) \\
0 \leq R_{2} & \leq I\left(U_{2} ; Y \mid U_{1}, V_{1}, V_{2}\right)-I\left(V_{2} ; S_{2} \mid Y, V_{1}\right) \\
R_{1}+R_{2} & \leq I\left(U_{1}, U_{2} ; Y \mid V_{1}, V_{2}\right)-I\left(V_{1}, V_{2} ; S_{1}, S_{2} \mid Y\right) \\
\Gamma_{k} & \geq \mathbb{E} \phi_{k}\left(X_{k}\right), \quad k=1,2
\end{aligned}
$$

for some ($V_{1}, V_{2}, U_{1}, U_{2}, S_{1}, S_{2}, X_{1}, X_{2}, Y$) with joint distribution

$$
P_{V_{1} \mid S_{1}} P_{V_{2} \mid S_{2}} P_{U_{1}} P_{U_{2}} P_{S_{1}} P_{S_{2}} P_{X_{1} \mid U_{1}, S_{1}} P_{X_{2} \mid U_{2}, S_{2}} P_{Y \mid S_{1}, S_{2}, X_{1}, X_{2}} .
$$

Main result

Outline

Problem Formulation

Strictly Causal SI

Causal SI

- MAC with causal SI - main
result
- The naïve approach
- Example

Summary

END
$\mathcal{R}_{\text {cau }}^{i}$ - the CH of all ($R_{1}, R_{2}, \Gamma_{1}, \Gamma_{2}$) satisfying

$$
\begin{aligned}
0 \leq R_{1} & \leq I\left(U_{1} ; Y \mid U_{2}, V_{1}, V_{2}\right)-I\left(V_{1} ; S_{1} \mid Y, V_{2}\right) \\
0 \leq R_{2} & \leq I\left(U_{2} ; Y \mid U_{1}, V_{1}, V_{2}\right)-I\left(V_{2} ; S_{2} \mid Y, V_{1}\right) \\
R_{1}+R_{2} & \leq I\left(U_{1}, U_{2} ; Y \mid V_{1}, V_{2}\right)-I\left(V_{1}, V_{2} ; S_{1}, S_{2} \mid Y\right) \\
\Gamma_{k} & \geq \mathbb{E} \phi_{k}\left(X_{k}\right), \quad k=1,2
\end{aligned}
$$

for some ($V_{1}, V_{2}, U_{1}, U_{2}, S_{1}, S_{2}, X_{1}, X_{2}, Y$) with joint distribution

$$
P_{V_{1} \mid S_{1}} P_{V_{2} \mid S_{2}} P_{U_{1}} P_{U_{2}} P_{S_{1}} P_{S_{2}} P_{X_{1} \mid U_{1}, S_{1}} P_{X_{2} \mid U_{2}, S_{2}} P_{Y \mid S_{1}, S_{2}, X_{1}, X_{2}} .
$$

Theorem 3 (Causal, independent SI streams)

$$
\mathcal{R}_{\mathrm{cau}}^{\mathrm{i}} \subseteq \mathcal{C}_{\mathrm{cau}}^{i}
$$

The naïve approach

The naïve approach - using Shannon strategies, without block Markov coding of the state.
Outline

Problem Formulation

Strictly Causal SI

Causal SI

- MAC with causal SI - main
result
- The naïve approach
- Example

Summary

The naïve approach

The naïve approach - using Shannon strategies, without block Markov coding of the state. It leads to the region of all (R_{1}, R_{2}) satisfying

Outline

Problem Formulation

Strictly Causal SI

Causal SI

- MAC with causal SI - main
result
- The naïve approach
- Example

$$
\begin{aligned}
R_{1} & \leq I\left(T_{1} ; Y \mid T_{2}, Q\right) \\
R_{2} & \leq I\left(T_{2} ; Y \mid T_{1}, Q\right) \\
R_{1}+R_{2} & \leq I\left(T_{1}, T_{2} ; Y \mid Q\right)
\end{aligned}
$$

for some joint distribution $P_{Q} P_{T_{1} \mid Q} P_{T_{2} \mid Q} P_{Y \mid T_{1}, T_{2}}$.

The naïve approach

The naïve approach - using Shannon strategies, without block Markov coding of the state. It leads to the region of all (R_{1}, R_{2}) satisfying

Outline

Problem Formulation

Strictly Causal SI

Causal SI

- MAC with causal SI - main
result
- The naïve approach
- Example

Summary

END

$$
\begin{aligned}
R_{1} & \leq I\left(T_{1} ; Y \mid T_{2}, Q\right) \\
R_{2} & \leq I\left(T_{2} ; Y \mid T_{1}, Q\right) \\
R_{1}+R_{2} & \leq I\left(T_{1}, T_{2} ; Y \mid Q\right)
\end{aligned}
$$

for some joint distribution $P_{Q} P_{T_{1} \mid Q} P_{T_{2} \mid Q} P_{Y \mid T_{1}, T_{2}}$. Here
$T_{k}, k=1,2$ are random Shannon strategies:
$T_{k} \in \mathcal{T}_{k}, \quad$ the set of mappings $t_{k}: \mathcal{S}_{k} \rightarrow \mathcal{X}_{k}$

The naïve approach

The naïve approach - using Shannon strategies, without block Markov coding of the state. It leads to the region of all (R_{1}, R_{2}) satisfying

Outline

Problem Formulation

Strictly Causal SI

Causal SI

- MAC with causal SI - main
result
- The naïve approach
- Example

Summary

$$
\begin{aligned}
R_{1} & \leq I\left(T_{1} ; Y \mid T_{2}, Q\right) \\
R_{2} & \leq I\left(T_{2} ; Y \mid T_{1}, Q\right) \\
R_{1}+R_{2} & \leq I\left(T_{1}, T_{2} ; Y \mid Q\right)
\end{aligned}
$$

for some joint distribution $P_{Q} P_{T_{1} \mid Q} P_{T_{2} \mid Q} P_{Y \mid T_{1}, T_{2}}$. Here
$T_{k}, k=1,2$ are random Shannon strategies:
$T_{k} \in \mathcal{T}_{k}, \quad$ the set of mappings $t_{k}: \mathcal{S}_{k} \rightarrow \mathcal{X}_{k}$
Q is a time sharing random variable,

The naïve approach

The naïve approach - using Shannon strategies, without block Markov coding of the state. It leads to the region of all (R_{1}, R_{2}) satisfying

Outline

Problem Formulation

Strictly Causal SI

Causal SI

- MAC with causal SI - main
result
- The naïve approach
- Example

Summary

$$
\begin{aligned}
R_{1} & \leq I\left(T_{1} ; Y \mid T_{2}, Q\right) \\
R_{2} & \leq I\left(T_{2} ; Y \mid T_{1}, Q\right) \\
R_{1}+R_{2} & \leq I\left(T_{1}, T_{2} ; Y \mid Q\right)
\end{aligned}
$$

for some joint distribution $P_{Q} P_{T_{1} \mid Q} P_{T_{2} \mid Q} P_{Y \mid T_{1}, T_{2}}$. Here
$T_{k}, k=1,2$ are random Shannon strategies:

$$
T_{k} \in \mathcal{T}_{k}, \quad \text { the set of mappings } \quad t_{k}: \mathcal{S}_{k} \rightarrow \mathcal{X}_{k}
$$

Q is a time sharing random variable, and

$$
\begin{aligned}
P_{Y \mid T_{1}, T_{2}}\left(y \mid t_{1}, t_{2}\right)= & \sum_{s_{1} \in \mathcal{S}_{1}} \sum_{s_{2} \in \mathcal{S}_{2}} P_{S_{1}}\left(s_{1}\right) P_{S_{2}}\left(s_{2}\right) \\
& \cdot P_{Y \mid S_{1}, S_{2}, X_{1}, X_{2}}\left(y \mid s_{1}, s_{2}, t_{1}\left(s_{1}\right), t_{2}\left(s_{2}\right)\right)
\end{aligned}
$$

The naïve approach

The naïve approach - using Shannon strategies, without block Markov coding of the state. It leads to the region of all $\left(R_{1}, R_{2}\right)$ satisfying

Outline

Problem Formulation

Strictly Causal SI

Causal SI

- MAC with causal SI - main
result
- The naïve approach
- Example

Summary

$$
\begin{aligned}
R_{1} & \leq I\left(T_{1} ; Y \mid T_{2}, Q\right) \\
R_{2} & \leq I\left(T_{2} ; Y \mid T_{1}, Q\right) \\
R_{1}+R_{2} & \leq I\left(T_{1}, T_{2} ; Y \mid Q\right)
\end{aligned}
$$

for some joint distribution $P_{Q} P_{T_{1} \mid Q} P_{T_{2} \mid Q} P_{Y \mid T_{1}, T_{2}}$.

We denote this region as $\mathcal{R}^{\text {naive }}$.

The naïve approach

The naïve approach - using Shannon strategies, without block Markov coding of the state. It leads to the region of all $\left(R_{1}, R_{2}\right)$ satisfying

Outline

Problem Formulation

Strictly Causal SI

Causal SI
D MAC with causal SI - main
result

- The naïve approach
- Example

Summary

END

$$
\begin{aligned}
R_{1} & \leq I\left(T_{1} ; Y \mid T_{2}, Q\right) \\
R_{2} & \leq I\left(T_{2} ; Y \mid T_{1}, Q\right) \\
R_{1}+R_{2} & \leq I\left(T_{1}, T_{2} ; Y \mid Q\right)
\end{aligned}
$$

for some joint distribution $P_{Q} P_{T_{1} \mid Q} P_{T_{2} \mid Q} P_{Y \mid T_{1}, T_{2}}$.

We denote this region as $\mathcal{R}^{\text {naive }}$.
$\mathcal{R}^{\text {naive }}$ contains the region suggested in [S.A. Jafar, Dec 2006].

The naïve approach

Outline

Problem Formulation

Strictly Causal SI

Causal SI
MAC with causal SI - main
result

- The naïve approach
- Example

Summary

- $\mathcal{R}_{\text {cau }}^{i}$ contains the region of the naïve approach, since we can always choose deterministic $\left(V_{1}, V_{2}\right)$.
- In some cases, the inclusion is strict.

Example

The asymmetric state-dependent MAC consisting of two single user channels:

Outline

Problem Formulation

Strictly Causal SI

Causal SI

- MAC with causal SI - main
result
-The naïve approach
- Example

Summary

Example

The asymmetric state-dependent MAC consisting of two single user channels:

- Outline

Problem Formulation

Strictly Causal SI

Causal SI

- MAC with causal SI - main
result
- The naïve approach
- Example

Summary

$$
\mathcal{X}_{1}=\{0,1\}, \quad \mathcal{X}_{2}=\{0,1,2,3\}, \quad \mathcal{Y}=\mathcal{Y}_{1} \times \mathcal{Y}_{2}
$$

$$
\mathcal{Y}_{1}=\{0,1\}, \quad \mathcal{Y}_{2}=\{0,1,2,3\}
$$

The channel is defined as

$$
\begin{aligned}
Y_{1} & =X_{1} \\
Y_{2} & =X_{2} \oplus S_{1}
\end{aligned}
$$

Example

The asymmetric state-dependent MAC consisting of two single user channels:

Outline

Problem Formulation

Strictly Causal SI

Causal SI
-MAC with causal SI - main
result
-The naïve approach

- Example

Summary
END

$$
\mathcal{X}_{1}=\{0,1\}, \quad \mathcal{X}_{2}=\{0,1,2,3\}, \quad \mathcal{Y}=\mathcal{Y}_{1} \times \mathcal{Y}_{2}
$$

$$
\mathcal{Y}_{1}=\{0,1\}, \quad \mathcal{Y}_{2}=\{0,1,2,3\}
$$

The channel is defined as

$$
\begin{aligned}
Y_{1} & =X_{1} \\
Y_{2} & =X_{2} \oplus S_{1}
\end{aligned}
$$

where

$$
\mathcal{S}_{1}=\{0,1,2,3\}, \quad P_{S_{1}}=(1-p, p / 3, p / 3, p / 3), \quad H\left(S_{1}\right)<1
$$

Example

- Outline

Problem Formulation

Strictly Causal SI

Causal SI

MAC with causal SI - main
result

- The naïve approach
- Example

Summary

Example

Outline

Problem Formulation

Strictly Causal SI

Causal SI
MAC with causal SI - main
result

- The naïve approach
- Example

Summary

Example

Outline

Problem Formulation

Strictly Causal SI

Causal SI

- MAC with causal SI - main
result
- The naïve approach
- Example

Summary

$$
\begin{array}{lll}
Y_{1}=X_{1}, & \text { binary } \\
Y_{2}=X_{2} \oplus S_{1}, & & \text { quaternary with } H\left(S_{1}\right)<1 .
\end{array}
$$

What is the maximal transmission rate of user 2 under each of the schemes?

- The block Markov coding scheme yields $R_{2, \max }^{(\mathrm{bm})}=2$.

Example

Outline

Problem Formulation

Strictly Causal SI

Causal SI
-MAC with causal SI - main
result
The naïve approach

- Example

Summary

$$
\begin{array}{lll}
Y_{1}=X_{1}, & \text { binary } \\
Y_{2}=X_{2} \oplus S_{1}, & & \text { quaternary with } H\left(S_{1}\right)<1 .
\end{array}
$$

What is the maximal transmission rate of user 2 under each of the schemes?

- The block Markov coding scheme yields $R_{2, \max }^{(\mathrm{bm})}=2$.

Achievability - by proper choice of random variables in $\mathcal{R}_{\text {cau }}^{i}$.

Example

Problem Formulation

Strictly Causal SI

Causal SI

- MAC with causal SI - main
result
The naïve approach
- Example

Summary

$$
\begin{array}{lll}
Y_{1}=X_{1}, & \text { binary } \\
Y_{2}=X_{2} \oplus S_{1}, & & \text { quaternary with } H\left(S_{1}\right)<1 .
\end{array}
$$

What is the maximal transmission rate of user 2 under each of the schemes?

- The block Markov coding scheme yields $R_{2, \max }^{(\mathrm{bm})}=2$.

Achievability - by proper choice of random variables in $\mathcal{R}_{\text {cau }}^{i}$.
This is tight, since $\left|\mathcal{X}_{2}\right|=4$.

Example

Problem Formulation

Strictly Causal SI

Causal SI

- MAC with causal SI - main
result
The naïve approach
- Example

Summary

$$
\begin{array}{lll}
Y_{1}=X_{1}, & \text { binary } \\
Y_{2}=X_{2} \oplus S_{1}, & & \text { quaternary with } H\left(S_{1}\right)<1 .
\end{array}
$$

What is the maximal transmission rate of user 2 under each of the schemes?

- The block Markov coding scheme yields $R_{2, \max }^{(\mathrm{bm})}=2$.

Achievability - by proper choice of random variables in $\mathcal{R}_{\text {cau }}^{i}$.
This is tight, since $\left|\mathcal{X}_{2}\right|=4$.

- It can be shown that $R_{2, \max }^{\text {(naive }}<2$.

Summary

- Derived achievable region for the MAC with two independent strictly causal SI streams, based on block Markov encoding of the state.
- Although cooperation between the users is impossible in this setup, strictly causal SI enlarges the capacity region of the MAC.
- Extended the results to causal SI
- The new region for causal SI is strictly better than the region obtained by the naïve approach, which utilizes only Shannon strategies without block-Markov coding.

Thank You!

