The Multiple Access Channel with Causal and Strictly Causal Side Information at the Encoders

Amos Lapidoth and Yossef Steinberg

Outline

Outline

- Problem Formulation: The MAC with strictly causal and causal common SI

Outline

- Problem Formulation: The MAC with strictly causal and causal common SI
- An achievable region for the strictly causal model

Outline

- Problem Formulation: The MAC with strictly causal and causal common SI
- An achievable region for the strictly causal model
- Example

Outline

- Problem Formulation: The MAC with strictly causal and causal common SI
- An achievable region for the strictly causal model
- Example
- An achievable region for the causal model

Outline

- Problem Formulation: The MAC with strictly causal and causal common SI
- An achievable region for the strictly causal model
- Example
- An achievable region for the causal model
- The naïve approach

Outline

- Problem Formulation: The MAC with strictly causal and causal common SI
- An achievable region for the strictly causal model
- Example
- An achievable region for the causal model
- The naïve approach
- Example

Outline

- Problem Formulation: The MAC with strictly causal and causal common SI
- An achievable region for the strictly causal model
- Example
- An achievable region for the causal model
- The naïve approach
- Example
- Two independent states

Problem Formulation

Strictly Causal SI

Causal SI

Independent SI streams

Summary

Outline
 Problem Formulation

MAC with strictly causal side information (SI):

Problem Formulation

Outline

Strictly Causal SI

Causal SI

Independent SI streams

Summary

END

Problem Formulation

MAC with strictly causal side information (SI):

- One state sequence S^{n}, available to the encoders in a strictly causal manner:

$$
X_{1, i}=f_{1, i}\left(m_{1}, S^{i-1}\right), \quad X_{2, i}=f_{2, i}\left(m_{2}, S^{i-1}\right), \quad i=1, \ldots, n
$$

Problem Formulation

Outline

Strictly Causal SI

Causal SI

Independent SI streams

Summary

END

Problem Formulation

MAC with strictly causal side information (SI):

- One state sequence S^{n}, available to the encoders in a strictly causal manner:

$$
\begin{aligned}
& X_{1, i}=f_{1, i}\left(m_{1}, S^{i-1}\right), \quad X_{2, i}=f_{2, i}\left(m_{2}, S^{i-1}\right), \quad i=1, \ldots, n \\
& \left(\hat{m}_{1}, \hat{m}_{2}\right)=g\left(Y^{n}\right)
\end{aligned}
$$

Problem Formulation

MAC with strictly causal side information (SI):

Outline

Problem Formulation

Strictly Causal SI

Causal SI

Independent SI streams

Summary

END

- One state sequence S^{n}, available to the encoders in a strictly causal manner:

$$
\begin{aligned}
& X_{1, i}=f_{1, i}\left(m_{1}, S^{i-1}\right), \quad X_{2, i}=f_{2, i}\left(m_{2}, S^{i-1}\right), \quad i=1, \ldots, n \\
& \left(\hat{m}_{1}, \hat{m}_{2}\right)=g\left(Y^{n}\right)
\end{aligned}
$$

- Transmission is subject to input constraints $\frac{1}{n} \sum_{i=1}^{n} \phi_{k}\left(X_{k, i}\right) \leq \Gamma_{k}, \quad k=1,2$.

Problem Formulation

Outline

Strictly Causal SI

Causal SI

Independent SI streams

Summary

END

Problem Formulation

MAC with strictly causal side information (SI):

- One state sequence S^{n}, available to the encoders in a strictly causal manner:

$$
\begin{aligned}
& X_{1, i}=f_{1, i}\left(m_{1}, S^{i-1}\right), \quad X_{2, i}=f_{2, i}\left(m_{2}, S^{i-1}\right), \quad i=1, \ldots, n \\
& \left(\hat{m}_{1}, \hat{m}_{2}\right)=g\left(Y^{n}\right)
\end{aligned}
$$

- Transmission is subject to input constraints $\frac{1}{n} \sum_{i=1}^{n} \phi_{k}\left(X_{k, i}\right) \leq \Gamma_{k}, \quad k=1,2$.
- Memoryless, time invariant channel and state $P_{Y \mid S, X_{1}, X_{2}}, P_{S}$.

Problem Formulation

MAC with strictly causal side information (SI):

Outline

Problem Formulation

Strictly Causal SI

Causal SI

Independent SI streams

Summary
END

We are interested in \mathcal{C}_{s-c}, the region of all achievable rate and cost pairs

$$
\left(R_{1}, R_{2}, \Gamma_{1}, \Gamma_{2}\right)
$$

Problem Formulation

Outline

Strictly Causal SI

Causal SI

Independent SI streams

Summary
END

Problem Formulation

MAC with strictly causal side information (SI):

We are interested in \mathcal{C}_{s-c}, the region of all achievable rate and cost pairs

$$
\left(R_{1}, R_{2}, \Gamma_{1}, \Gamma_{2}\right)
$$

$\mathcal{C}_{\mathrm{s}-\mathrm{c}}\left(\Gamma_{1}, \Gamma_{2}\right)$ - the collection of all rate pairs $\left(R_{1}, R_{2}\right)$ such that

$$
\left(R_{1}, R_{2}, \Gamma_{1}, \Gamma_{2}\right) \in \mathcal{C}_{\mathrm{s}-\mathrm{c}}
$$

Problem Formulation

Outline

Problem Formulation

Strictly Causal SI

Causal SI

Independent SI streams

Summary

END

MAC with causal SI:

- One state sequence S^{n}, available to the encoders in a causal manner:

$$
\begin{aligned}
& X_{1, i}=f_{1, i}\left(m_{1}, S^{i}\right), \quad X_{2, i}=f_{2, i}\left(m_{2}, S^{i}\right), \quad i=1, \ldots, n \\
& \left(\hat{m}_{1}, \hat{m}_{2}\right)=g\left(Y^{n}\right)
\end{aligned}
$$

- Transmission is subject to input constraints $\frac{1}{n} \sum_{i=1}^{n} \phi_{k}\left(X_{k, i}\right) \leq \Gamma_{k}, \quad k=1,2$.
- Memoryless, time invariant channel and state $P_{Y \mid S, X_{1}, X_{2}}, P_{S}$.

Problem Formulation

MAC with causal SI:

Outline

Strictly Causal SI

Causal SI

Independent SI streams

Summary
END

Problem Formulation

We are interested in $\mathcal{C}_{\text {cau }}$, the region of all achievable rate and cost pairs

$$
\left(R_{1}, R_{2}, \Gamma_{1}, \Gamma_{2}\right)
$$

$\mathcal{C}_{\text {cau }}\left(\Gamma_{1}, \Gamma_{2}\right)$ - the collection of all rate pairs $\left(R_{1}, R_{2}\right)$ such that

$$
\left(R_{1}, R_{2}, \Gamma_{1}, \Gamma_{2}\right) \in \mathcal{C}_{\text {cau }}
$$

Single user and BC with SC SI

- Strictly causal SI does not increase the capacity of the single user channel

MAC with SC SI - main

result

- The coding scheme
- Example

Causal SI

Independent SI streams

Summary

END

Single user and BC with SC SI

- Strictly causal SI does not increase the capacity of the single user channel

Outline

Problem Formulation

Strictly Causal SI
Single user and BC with
SC SI
MAC with SC SI - main
result
The coding scheme

- Example

Causal SI

Independent SI streams

Summary

END

$$
\begin{aligned}
n R-n \epsilon_{n} & \leq I\left(M ; Y^{n}\right)=\sum_{i=1}^{n} I\left(M ; Y_{i} \mid Y^{i-1}\right) \\
& \leq \sum_{i=1}^{n} I\left(M, Y^{i-1} ; Y_{i}\right) \\
& \leq \sum_{i=1}^{n} I\left(M, Y^{i-1}, X_{i} ; Y_{i}\right) \\
& =\sum_{i=1}^{n} I\left(X_{i} ; Y_{i}\right) \\
& \leq \max _{P_{X}} I(X ; Y)=n C
\end{aligned}
$$

where C is the capacity without SI .

Single user and BC with SC SI

- Strictly causal SI does not increase the capacity of the single user channel (a reminiscent of the situation in feedback capacity)

Problem Formulation

Strictly Causal SI
Single user and BC with
SC SI
MAC with SC SI - main
result
The coding scheme

- Example

Causal SI

Independent SI streams

Summary

END

Single user and BC with SC SI

- Strictly causal SI does not increase the capacity of the single user channel

Strictly Causal SI Single user and BC with SC SI
MAC with SC SI - main result
The coding scheme

- Example

Causal SI

Independent SI streams

Summary

END
(a reminiscent of the situation in feedback capacity)

- Transmission of the state (or compressed version thereof) to the other side is sub optimal: waste of precious rate, without increase in capacity.
\qquad

Single user and BC with SC SI

- An example by Dueck (1980): A non degraded additive noise BC with feedback. The noise is common to the two channels.

Outline

Problem Formulation

Strictly Causal SI
Single user and BC with
SC SI
MAC with SC SI - main
result
The coding scheme

- Example

Causal SI

Independent SI streams

Summary

END

Single user and BC with SC SI

- An example by Dueck (1980): A non degraded additive noise BC with feedback. The noise is common to the two channels.
> The encoder transmits the noise to the two users, uncompressed.

Single user and BC with SC SI

- An example by Dueck (1980): A non degraded additive noise BC with feedback.

Strictly Causal SI

MAC with SC SI - main
result
The coding scheme

- Example

Causal SI

Independent SI streams

Summary

END The noise is common to the two channels.
> The encoder transmits the noise to the two users, uncompressed.
, Knowledge of the additive noise at the decoder facilitates decoding of the messages.

Single user and BC with SC SI

- An example by Dueck (1980): A non degraded additive noise BC with feedback. The noise is common to the two channels.
- The encoder transmits the noise to the two users, uncompressed.
- Knowledge of the additive noise at the decoder facilitates decoding of the messages.
- Although precious rate is spent on transmitting the noise, the net effect is an increase in the capacity region.

Single user and BC with SC SI

- An example by Dueck (1980): A non degraded additive noise BC with feedback. The noise is common to the two channels.
- The encoder transmits the noise to the two users, uncompressed.
- Knowledge of the additive noise at the decoder facilitates decoding of the messages.
- Although precious rate is spent on transmitting the noise, the net effect is an increase in the capacity region.
- Yields gains in capacity also when only lossy transmission of the noise is possible.

Single user and BC with SC SI

- An example by Dueck (1980): A non degraded additive noise BC with feedback. The noise is common to the two channels.
- The encoder transmits the noise to the two users, uncompressed.
- Knowledge of the additive noise at the decoder facilitates decoding of the messages.
- Although precious rate is spent on transmitting the noise, the net effect is an increase in the capacity region.
- Yields gains in capacity also when only lossy transmission of the noise is possible.
- In the MAC: The two users can cooperate in transmitting the noise (state) to the decoder.

MAC with SC SI

Outline

Problem Formulation

Strictly Causal SI
Single user and $B C$ with
SC SI
-MAC with SC SI - main
result
The coding scheme

- Example

Causal SI

Independent SI streams

Summary
END
$\mathcal{R}_{\text {s-c }}$ - the CH of all ($R_{1}, R_{2}, \Gamma_{1}, \Gamma_{2}$) satisfying

$$
\begin{aligned}
R_{1} & \leq I\left(X_{1} ; Y \mid X_{2}, U, V\right) \\
R_{2} & \leq I\left(X_{2} ; Y \mid X_{1}, U, V\right) \\
R_{1}+R_{2} & \leq I\left(X_{1}, X_{2} ; Y \mid U, V\right) \\
R_{1}+R_{2} & \leq I\left(X_{1}, X_{2}, V ; Y\right)-I(V ; S) \\
\Gamma_{k} & \geq \mathrm{E}\left[\phi_{k}\left(X_{k}\right)\right], \quad k=1,2
\end{aligned}
$$

for some joint distribution

$$
P_{U, V, X_{1}, X_{2}, S, Y}=P_{S} P_{X_{1} \mid U} P_{X_{2} \mid U} P_{U} P_{V \mid S} P_{Y \mid S, X_{1}, X_{2}} .
$$

MAC with SC SI

Outline

Problem Formulation

Strictly Causal SI
Single user and BC with
SC SI

- MAC with SC SI - main
result
The coding scheme
- Example

Causal SI

Independent SI streams

Summary

END
$\mathcal{R}_{\text {s-c }}$ - the CH of all ($R_{1}, R_{2}, \Gamma_{1}, \Gamma_{2}$) satisfying

$$
\begin{aligned}
R_{1} & \leq I\left(X_{1} ; Y \mid X_{2}, U, V\right) \\
R_{2} & \leq I\left(X_{2} ; Y \mid X_{1}, U, V\right) \\
R_{1}+R_{2} & \leq I\left(X_{1}, X_{2} ; Y \mid U, V\right) \\
R_{1}+R_{2} & \leq I\left(X_{1}, X_{2}, V ; Y\right)-I(V ; S) \\
\Gamma_{k} & \geq \mathrm{E}\left[\phi_{k}\left(X_{k}\right)\right], \quad k=1,2
\end{aligned}
$$

for some joint distribution

$$
P_{U, V, X_{1}, X_{2}, S, Y}=P_{S} P_{X_{1} \mid U} P_{X_{2} \mid U} P_{U} P_{V \mid S} P_{Y \mid S, X_{1}, X_{2}} .
$$

$$
\begin{aligned}
& X_{1}-U-X_{2} \\
& \left(X_{1}, U, X_{2}\right) \perp(V, S)
\end{aligned}
$$

MAC with SC SI

Outline

Problem Formulation

Strictly Causal SI
Single user and BC with
SC SI

- MAC with SC SI - main
result
The coding scheme
- Example

Causal SI

Independent SI streams

Summary
END

$$
\begin{aligned}
R_{1} & \leq I\left(X_{1} ; Y \mid X_{2}, U, V\right) \\
R_{2} & \leq I\left(X_{2} ; Y \mid X_{1}, U, V\right) \\
R_{1}+R_{2} & \leq I\left(X_{1}, X_{2} ; Y \mid U, V\right) \\
R_{1}+R_{2} & \leq I\left(X_{1}, X_{2}, V ; Y\right)-I(V ; S) \\
\Gamma_{k} & \geq \mathrm{E}\left[\phi_{k}\left(X_{k}\right)\right], \quad k=1,2
\end{aligned}
$$

for some joint distribution

$$
P_{U, V, X_{1}, X_{2}, S, Y}=P_{S} P_{X_{1} \mid U} P_{X_{2} \mid U} P_{U} P_{V \mid S} P_{Y \mid S, X_{1}, X_{2}} .
$$

$$
\begin{aligned}
& X_{1}-U-X_{2} \\
& \left(X_{1}, U, X_{2}\right) \perp(V, S) \\
& V-S-Y
\end{aligned}
$$

Main result

Outline

Problem Formulation

Strictly Causal SI
Single user and BC with
SC SI

- MAC with SC SI - main
result
The coding scheme
- Example

Causal SI

Independent SI streams

Summary

END

$$
\begin{aligned}
R_{1} & \leq I\left(X_{1} ; Y \mid X_{2}, U, V\right) \\
R_{2} & \leq I\left(X_{2} ; Y \mid X_{1}, U, V\right) \\
R_{1}+R_{2} & \leq I\left(X_{1}, X_{2} ; Y \mid U, V\right) \\
R_{1}+R_{2} & \leq I\left(X_{1}, X_{2}, V ; Y\right)-I(V ; S) \\
\Gamma_{k} & \geq \mathrm{E}\left[\phi_{k}\left(X_{k}\right)\right], \quad k=1,2
\end{aligned}
$$

for some joint distribution

$$
P_{U, V, X_{1}, X_{2}, S, Y}=P_{S} P_{X_{1} \mid U} P_{X_{2} \mid U} P_{U} P_{V \mid S} P_{Y \mid S, X_{1}, X_{2}} .
$$

Theorem 1 (Strictly-Causal SI) $\mathcal{R}_{\mathrm{s}-\mathrm{c}} \subseteq \mathcal{C}_{\mathrm{s}-\mathrm{c}}$

Main Result

We can write \mathcal{R}_{s-c} as

Outline

Problem Formulation

Strictly Causal SI

- Single user and BC with

SC SI
-MAC with SC SI - main
result
The coding scheme

- Example

Causal SI

Independent SI streams

Summary
END

$$
\begin{aligned}
R_{1} & \leq I\left(X_{1} ; Y \mid X_{2}, U, V\right) \\
R_{2} & \leq I\left(X_{2} ; Y \mid X_{1}, U, V\right) \\
R_{1}+R_{2} & \leq I\left(X_{1}, X_{2} ; Y \mid U, V\right) \\
R_{0}+R_{1}+R_{2} & \leq I\left(X_{1}, X_{2} ; Y \mid V\right) \\
R_{0} & \geq I(V ; S)-I(V ; Y) . \\
\Gamma_{k} & \geq \mathrm{E}\left[\phi_{k}\left(X_{k}\right)\right], \quad k=1,2
\end{aligned}
$$

Main Result

Outline

Problem Formulation

Strictly Causal SI

- Single user and BC with

SC SI
-MAC with SC SI - main
result
The coding scheme

- Example

Causal SI Independent SI streams

Summary

END

$$
\begin{aligned}
R_{1} & \leq I\left(X_{1} ; Y \mid X_{2}, U, V\right) \\
R_{2} & \leq I\left(X_{2} ; Y \mid X_{1}, U, V\right) \\
R_{1}+R_{2} & \leq I\left(X_{1}, X_{2} ; Y \mid U, V\right) \\
R_{0}+R_{1}+R_{2} & \leq I\left(X_{1}, X_{2} ; Y \mid V\right) \\
R_{0} & \geq I(V ; S)-I(V ; Y) . \\
\Gamma_{k} & \geq \mathrm{E}\left[\phi_{k}\left(X_{k}\right)\right], \quad k=1,2
\end{aligned}
$$

A block Markov scheme:

Main Result

Outline

Problem Formulation

Strictly Causal SI
Single user and BC with
SC SI

- MAC with SC SI - main
result
- The coding scheme
- Example

Causal SI

Independent SI streams

Summary

END

$$
\begin{aligned}
R_{1} & \leq I\left(X_{1} ; Y \mid X_{2}, U, V\right) \\
R_{2} & \leq I\left(X_{2} ; Y \mid X_{1}, U, V\right) \\
R_{1}+R_{2} & \leq I\left(X_{1}, X_{2} ; Y \mid U, V\right) \\
R_{0}+R_{1}+R_{2} & \leq I\left(X_{1}, X_{2} ; Y \mid V\right) \\
R_{0} & \geq I(V ; S)-I(V ; Y) . \\
\Gamma_{k} & \geq \mathrm{E}\left[\phi_{k}\left(X_{k}\right)\right], \quad k=1,2
\end{aligned}
$$

A block Markov scheme:

- The state sequence S^{n} is compressed by a Wyner-Ziv scheme, with coding random variable V, and decoder side information Y^{n}.

Main Result

Outline

Problem Formulation

Strictly Causal SI
Single user and BC with
SC SI
-MAC with SC SI - main
result

- The coding scheme
- Example

Causal SI

Independent SI streams

Summary

END

$$
\begin{aligned}
R_{1} & \leq I\left(X_{1} ; Y \mid X_{2}, U, V\right) \\
R_{2} & \leq I\left(X_{2} ; Y \mid X_{1}, U, V\right) \\
R_{1}+R_{2} & \leq I\left(X_{1}, X_{2} ; Y \mid U, V\right) \\
R_{0}+R_{1}+R_{2} & \leq I\left(X_{1}, X_{2} ; Y \mid V\right) \\
R_{0} & \geq I(V ; S)-I(V ; Y) . \\
\Gamma_{k} & \geq \mathrm{E}\left[\phi_{k}\left(X_{k}\right)\right], \quad k=1,2
\end{aligned}
$$

A block Markov scheme:

- The state sequence S^{n} is compressed by a Wyner-Ziv scheme, with coding random variable V, and decoder side information Y^{n}.

$$
V-S-Y
$$

Main Result

Outline

Problem Formulation

Strictly Causal SI

- Single user and BC with

SC SI
-MAC with SC SI - main
result
The coding scheme

- Example

Causal SI

Independent SI streams

Summary

END

$$
\begin{aligned}
R_{1} & \leq I\left(X_{1} ; Y \mid X_{2}, U, V\right) \\
R_{2} & \leq I\left(X_{2} ; Y \mid X_{1}, U, V\right) \\
R_{1}+R_{2} & \leq I\left(X_{1}, X_{2} ; Y \mid U, V\right) \\
R_{0}+R_{1}+R_{2} & \leq I\left(X_{1}, X_{2} ; Y \mid V\right) \\
R_{0} & \geq I(V ; S)-I(V ; Y) \\
\Gamma_{k} & \geq \mathrm{E}\left[\phi_{k}\left(X_{k}\right)\right], \quad k=1,2
\end{aligned}
$$

A block Markov scheme:

- The state sequence S^{n} is compressed by a Wyner-Ziv scheme, with coding random variable V, and decoder side information Y^{n}.

$$
V-S-Y
$$

- The compressed state is transmitted to the decoder in the next transmission block as a common message, together with the independent messages m_{1}, m_{2}.

Main Result

Outline

Problem Formulation

Strictly Causal SI

- Single user and $B C$ with

SC SI
-MAC with SC SI - main
result

- The coding scheme
- Example

Causal SI

Independent SI streams

Summary

END

$$
\begin{aligned}
R_{1} & \leq I\left(X_{1} ; Y \mid X_{2}, U, V\right) \\
R_{2} & \leq I\left(X_{2} ; Y \mid X_{1}, U, V\right) \\
R_{1}+R_{2} & \leq I\left(X_{1}, X_{2} ; Y \mid U, V\right) \\
R_{0}+R_{1}+R_{2} & \leq I\left(X_{1}, X_{2} ; Y \mid V\right) \\
R_{0} & \geq I(V ; S)-I(V ; Y) \\
\Gamma_{k} & \geq \mathrm{E}\left[\phi_{k}\left(X_{k}\right)\right], \quad k=1,2
\end{aligned}
$$

A block Markov scheme:

- The state sequence S^{n} is compressed by a Wyner-Ziv scheme, with coding random variable V, and decoder side information Y^{n}.

$$
V-S-Y
$$

- The compressed state is transmitted to the decoder in the next transmission block as a common message, together with the independent messages m_{1}, m_{2}.

$$
X_{1}-U-X_{2}, \quad \text { independent of } \quad(V, S)
$$

Main Result

Outline

Problem Formulation

Strictly Causal SI
Single user and $B C$ with
SC SI
-MAC with SC SI - main
result

- The coding scheme
- Example

Causal SI

Independent SI streams

Summary

END

$$
\begin{aligned}
R_{1} & \leq I\left(X_{1} ; Y \mid X_{2}, U, V\right) \\
R_{2} & \leq I\left(X_{2} ; Y \mid X_{1}, U, V\right) \\
R_{1}+R_{2} & \leq I\left(X_{1}, X_{2} ; Y \mid U, V\right) \\
R_{0}+R_{1}+R_{2} & \leq I\left(X_{1}, X_{2} ; Y \mid V\right) \\
R_{0} & \geq I(V ; S)-I(V ; Y) \\
\Gamma_{k} & \geq \mathrm{E}\left[\phi_{k}\left(X_{k}\right)\right], \quad k=1,2
\end{aligned}
$$

A block Markov scheme:

- The state sequence S^{n} is compressed by a Wyner-Ziv scheme, with coding random variable V, and decoder side information Y^{n}.

$$
V-S-Y
$$

- The compressed state is transmitted to the decoder in the next transmission block as a common message, together with the independent messages m_{1}, m_{2}.

$$
X_{1}-U-X_{2}, \quad \text { independent of } \quad(V, S) .
$$

- The two codes are decoupled.

The coding scheme

The total transmission time is divided into $B+1$ blocks, each of length n.

Outline

Problem Formulation

Strictly Causal SI
Single user and BC with
SC SI
MAC with SC SI - main
result
The coding scheme

- Example

Causal SI

Independent SI streams

Summary

END

The coding scheme

The total transmission time is divided into $B+1$ blocks, each of length n.

- First block - User 1 and User 2 transmit messages at rate R_{1} and R_{2}.

Outline
Problem Formulation

Strictly Causal SI

- Single user and BC with

SC SI
-MAC with SC SI - main
result
-The coding scheme

- Example

Causal SI

Independent SI streams

Summary

END

The coding scheme

Outline

Problem Formulation

Strictly Causal SI
Single user and BC with
SC SI
MAC with SC SI - main
result
The coding scheme

- Example

Causal SI

Independent SI streams

Summary

END

The total transmission time is divided into $B+1$ blocks, each of length n.
First block - User 1 and User 2 transmit messages at rate R_{1} and R_{2}.

- Block $b \in[2: B]$: the users cooperatively transmit a common message at rate R_{0}, and superimpose on it their private messages at rates R_{1}, R_{2}.

The coding scheme

Outline

Problem Formulation

Strictly Causal SI
Single user and BC with
SC SI
MAC with SC SI - main
result
The coding scheme

- Example

Causal SI

Independent SI streams

Summary

END

The total transmission time is divided into $B+1$ blocks, each of length n.

- First block - User 1 and User 2 transmit messages at rate R_{1} and R_{2}.
- Block $b \in[2: B]$: the users cooperatively transmit a common message at rate R_{0}, and superimpose on it their private messages at rates R_{1}, R_{2}.
, The common message consists of a Wyner-Ziv codeword of the state in previous block, $b-1$.

The coding scheme

Outline

Problem Formulation

Strictly Causal SI
Single user and BC with
SC SI

- MAC with SC SI - main
result
-The coding scheme
- Example

Causal SI

Independent SI streams

Summary

END

The total transmission time is divided into $B+1$ blocks, each of length n.

- First block - User 1 and User 2 transmit messages at rate R_{1} and R_{2}.
- Block $b \in[2: B]$: the users cooperatively transmit a common message at rate R_{0}, and superimpose on it their private messages at rates R_{1}, R_{2}.
, The common message consists of a Wyner-Ziv codeword of the state in previous block, $b-1$.
, The channel output at block $b-1$ serves as the decoder's SI.

The coding scheme

Outline

Problem Formulation

Strictly Causal SI
Single user and BC with
SC SI
MAC with SC SI - main
result
The coding scheme

- Example

Causal SI

Independent SI streams

Summary

END

The total transmission time is divided into $B+1$ blocks, each of length n.
First block - User 1 and User 2 transmit messages at rate R_{1} and R_{2}.

- Block $b \in[2: B]$: the users cooperatively transmit a common message at rate R_{0}, and superimpose on it their private messages at rates R_{1}, R_{2}.
, The common message consists of a Wyner-Ziv codeword of the state in previous block, $b-1$.
, The channel output at block $b-1$ serves as the decoder's SI.
> The Wyner-Ziv codeword is independent of the state during its transmission.

The coding scheme

Outline

Problem Formulation

Strictly Causal SI
Single user and BC with
SC SI

- MAC with SC SI - main
result
-The coding scheme
Example

Causal SI

Independent SI streams

Summary

END

The total transmission time is divided into $B+1$ blocks, each of length n.

- First block - User 1 and User 2 transmit messages at rate R_{1} and R_{2}.
- Block $b \in[2: B]$: the users cooperatively transmit a common message at rate R_{0}, and superimpose on it their private messages at rates R_{1}, R_{2}.
> The common message consists of a Wyner-Ziv codeword of the state in previous block, $b-1$.
, The channel output at block $b-1$ serves as the decoder's SI.
> The Wyner-Ziv codeword is independent of the state during its transmission.
- Block $B+1$: The users do not transmit private information. Transmit only the common message, consisting of the Wyner-Ziv codeword of the state in block B.

The coding scheme

Outline

Problem Formulation

Strictly Causal SI
Single user and BC with
SC SI
MAC with SC SI - main
result
The coding scheme
Example

Causal SI

Independent SI streams

Summary

END

The total transmission time is divided into $B+1$ blocks, each of length n.

- First block - User 1 and User 2 transmit messages at rate R_{1} and R_{2}.
- Block $b \in[2: B]$: the users cooperatively transmit a common message at rate R_{0}, and superimpose on it their private messages at rates R_{1}, R_{2}.
> The common message consists of a Wyner-Ziv codeword of the state in previous block, $b-1$.
, The channel output at block $b-1$ serves as the decoder's SI.
> The Wyner-Ziv codeword is independent of the state during its transmission.
- Block $B+1$: The users do not transmit private information. Transmit only the common message, consisting of the Wyner-Ziv codeword of the state in block B.
- Backward decoding: In block $B+1$, the decoder decodes the state of block B, using the output of block B as side information.

The coding scheme

Outline

Problem Formulation

Strictly Causal SI
Single user and BC with
SC SI
MAC with SC SI - main
result
The coding scheme
Example

Causal SI

Independent SI streams

Summary

END

The total transmission time is divided into $B+1$ blocks, each of length n.

- First block - User 1 and User 2 transmit messages at rate R_{1} and R_{2}.
- Block $b \in[2: B]$: the users cooperatively transmit a common message at rate R_{0}, and superimpose on it their private messages at rates R_{1}, R_{2}.
> The common message consists of a Wyner-Ziv codeword of the state in previous block, $b-1$.
, The channel output at block $b-1$ serves as the decoder's SI.
> The Wyner-Ziv codeword is independent of the state during its transmission.
- Block $B+1$: The users do not transmit private information. Transmit only the common message, consisting of the Wyner-Ziv codeword of the state in block B.
- Backward decoding: In block $B+1$, the decoder decodes the state of block B, using the output of block B as side information.
- The decoded state of block B is used to decode the messages sent at block B : private messages, and compressed state of block $B-1 \ldots$

Example

The Gaussian MAC where the state comprises the channel noise

Outline

Problem Formulation

Strictly Causal SI
Single user and BC with
SC SI
-MAC with SC SI - main
result
The coding scheme

- Example

Causal SI

Independent SI streams

Summary

END

$$
\begin{aligned}
& Y=X_{1}+X_{2}+S, \quad S \sim \mathcal{N}\left(0, \sigma_{s}^{2}\right) \\
& \mathrm{E}\left[X_{1}^{2}\right] \leq \Gamma_{1}, \quad \mathrm{E}\left[X_{2}^{2}\right] \leq \Gamma_{2} .
\end{aligned}
$$

Example

The Gaussian MAC where the state comprises the channel noise

Outline

Problem Formulation

Strictly Causal SI
Single user and BC with
SC SI

- MAC with SC SI - main
result
The coding scheme
- Example

Causal SI

Independent SI streams

Summary

END

$$
\begin{aligned}
& Y=X_{1}+X_{2}+S, \quad S \sim \mathcal{N}\left(0, \sigma_{s}^{2}\right) \\
& \mathrm{E}\left[X_{1}^{2}\right] \leq \Gamma_{1}, \quad \mathrm{E}\left[X_{2}^{2}\right] \leq \Gamma_{2}
\end{aligned}
$$

$\mathcal{C}_{s-c}\left(\Gamma_{1}, \Gamma_{2}\right)$ is the collection of all rate-pairs $\left(R_{1}, R_{2}\right)$ satisfying

$$
R_{1}+R_{2} \leq \frac{1}{2} \log \left(1+\frac{\left(\Gamma_{1}^{\frac{1}{2}}+\Gamma_{2}^{\frac{1}{2}}\right)^{2}}{\sigma_{s}^{2}}\right)
$$

Example

The Gaussian MAC where the state comprises the channel noise

Outline

Problem Formulation

Strictly Causal SI

- Single user and $B C$ with

SC SI

- MAC with SC SI - main
result
The coding scheme
- Example

Causal SI

Independent SI streams

Summary
END

$$
\begin{aligned}
& Y=X_{1}+X_{2}+S, \quad S \sim \mathcal{N}\left(0, \sigma_{s}^{2}\right) \\
& \mathrm{E}\left[X_{1}^{2}\right] \leq \Gamma_{1}, \quad \mathrm{E}\left[X_{2}^{2}\right] \leq \Gamma_{2} .
\end{aligned}
$$

$\mathcal{C}_{s-c}\left(\Gamma_{1}, \Gamma_{2}\right)$ is the collection of all rate-pairs $\left(R_{1}, R_{2}\right)$ satisfying

$$
R_{1}+R_{2} \leq \frac{1}{2} \log \left(1+\frac{\left(\Gamma_{1}^{\frac{1}{2}}+\Gamma_{2}^{\frac{1}{2}}\right)^{2}}{\sigma_{s}^{2}}\right)
$$

I.e., the full cooperation line can be achieved.

Example

The Gaussian MAC where the state comprises the channel noise

Outline

Problem Formulation

Strictly Causal SI
Single user and $B C$ with
SC SI
-MAC with SC SI - main
result

- The coding scheme
- Example

Causal SI

Independent SI streams

Summary
END

$$
\begin{aligned}
& Y=X_{1}+X_{2}+S, \quad S \sim \mathcal{N}\left(0, \sigma_{s}^{2}\right) \\
& \mathrm{E}\left[X_{1}^{2}\right] \leq \Gamma_{1}, \quad \mathrm{E}\left[X_{2}^{2}\right] \leq \Gamma_{2} .
\end{aligned}
$$

$\mathcal{C}_{s-c}\left(\Gamma_{1}, \Gamma_{2}\right)$ is the collection of all rate-pairs $\left(R_{1}, R_{2}\right)$ satisfying

$$
R_{1}+R_{2} \leq \frac{1}{2} \log \left(1+\frac{\left(\Gamma_{1}^{\frac{1}{2}}+\Gamma_{2}^{\frac{1}{2}}\right)^{2}}{\sigma_{s}^{2}}\right)
$$

I.e., the full cooperation line can be achieved.

Proof:

Example

Outline

Problem Formulation

Strictly Causal SI
Single user and $B C$ with
SC SI
MAC with SC SI - main
result
The coding scheme

- Example

Causal SI

Independent SI streams

Summary

END

The Gaussian MAC where the state comprises the channel noise

$$
\begin{aligned}
& Y=X_{1}+X_{2}+S, \quad S \sim \mathcal{N}\left(0, \sigma_{s}^{2}\right) \\
& \mathrm{E}\left[X_{1}^{2}\right] \leq \Gamma_{1}, \quad \mathrm{E}\left[X_{2}^{2}\right] \leq \Gamma_{2}
\end{aligned}
$$

$\mathcal{C}_{s-c}\left(\Gamma_{1}, \Gamma_{2}\right)$ is the collection of all rate-pairs $\left(R_{1}, R_{2}\right)$ satisfying

$$
R_{1}+R_{2} \leq \frac{1}{2} \log \left(1+\frac{\left(\Gamma_{1}^{\frac{1}{2}}+\Gamma_{2}^{\frac{1}{2}}\right)^{2}}{\sigma_{s}^{2}}\right)
$$

I.e., the full cooperation line can be achieved.

Proof:
Converse. Since strictly causal SI does not increase the capacity of the single user channel, full cooperation is an upper bound.

Example

Problem Formulation

Strictly Causal SI

- Single user and BC with

SC SI
-MAC with SC SI - main
result

- The coding scheme
- Example

Causal SI

Independent SI streams

Summary
END

The Gaussian MAC where the state comprises the channel noise
\square

Example

Problem Formulation

Strictly Causal SI

- Single user and BC with

SC SI
-MAC with SC SI - main
result

- The coding scheme
- Example

Causal SI

Independent SI streams

Summary
END

The Gaussian MAC where the state comprises the channel noise
\square

Example

Problem Formulation

Strictly Causal SI

- Single user and BC with

SC SI

- MAC with SC SI - main
result
The coding scheme
- Example

Causal SI

Independent SI streams

Summary

END
Problem Formulation

The Gaussian MAC where the state comprises the channel noise
\square

MAC with causal SI

The region we had for the strictly causal case is still achievable

Outline

Problem Formulation

Strictly Causal SI

Causal SI

- MAC with causal SI - main
result
- The naïve approach
- Example
$R_{1} \leq I\left(X_{1} ; Y \mid X_{2}, U, V\right)$
$R_{2} \leq I\left(X_{2} ; Y \mid X_{1}, U, V\right)$
$R_{1}+R_{2} \leq I\left(X_{1}, X_{2} ; Y \mid U, V\right)$

$$
R_{1}+R_{2} \leq I\left(X_{1}, X_{2}, V ; Y\right)-I(V ; S)
$$

$$
\Gamma_{k} \geq \mathrm{E}\left[\phi_{k}\left(X_{k}\right)\right], \quad k=1,2
$$

with the Markov conditions

$$
\begin{aligned}
& X_{1}-U-X_{2} \\
& \left(X_{1}, U, X_{2}\right) \perp(V, S) \\
& V-S-Y
\end{aligned}
$$

MAC with causal SI

The region we had for the strictly causal case is still achievable

Outline
 Problem Formulation
 Strictly Causal SI
 Causal SI
 - MAC with causal SI - main
 result
 - The naïve approach
 - Example

Independent SI streams

Summary

END

$$
\begin{aligned}
R_{1} & \leq I\left(X_{1} ; Y \mid X_{2}, U, V\right) \\
R_{2} & \leq I\left(X_{2} ; Y \mid X_{1}, U, V\right) \\
R_{1}+R_{2} & \leq I\left(X_{1}, X_{2} ; Y \mid U, V\right) \\
R_{1}+R_{2} & \leq I\left(X_{1}, X_{2}, V ; Y\right)-I(V ; S) \\
\Gamma_{k} & \geq \mathrm{E}\left[\phi_{k}\left(X_{k}\right)\right], \quad k=1,2
\end{aligned}
$$

with the Markov conditions

$$
\begin{aligned}
& X_{1}-U-X_{2} \\
& \left(X_{1}, U, X_{2}\right) \perp(V, S) \\
& V-S-Y
\end{aligned}
$$

But now, X_{1}, X_{2} can depend on S.

MAC with causal SI

The region we had for the strictly causal case is still achievable

Outline
 Problem Formulation
 Strictly Causal SI
 Causal SI
 MAC with causal SI - main
 result
 - The naïve approach
 - Example

Independent SI streams

Summary

END

$$
\begin{aligned}
R_{1} & \leq I\left(X_{1} ; Y \mid X_{2}, U, V\right) \\
R_{2} & \leq I\left(X_{2} ; Y \mid X_{1}, U, V\right) \\
R_{1}+R_{2} & \leq I\left(X_{1}, X_{2} ; Y \mid U, V\right) \\
R_{1}+R_{2} & \leq I\left(X_{1}, X_{2}, V ; Y\right)-I(V ; S) \\
\Gamma_{k} & \geq \mathrm{E}\left[\phi_{k}\left(X_{k}\right)\right], \quad k=1,2
\end{aligned}
$$

with the Markov conditions

$$
\begin{aligned}
& X_{1}-U-X_{2} \\
& \left(X_{1}, U, X_{2}\right) \perp(V, S) \\
& V-S-Y
\end{aligned}
$$

But now, X_{1}, X_{2} can depend on S.
\Rightarrow Use Shannon strategies on top of our block Markov scheme.

MAC with causal SI

The region we had for the strictly causal case is still achievable

Outline

Problem Formulation

Strictly Causal SI

Causal SI
D MAC with causal SI - main
result

- The naïve approach
- Example

Independent SI streams

Summary

END

$$
\begin{aligned}
R_{1} & \leq I\left(X_{1} ; Y \mid X_{2}, U, V\right) \\
R_{2} & \leq I\left(X_{2} ; Y \mid X_{1}, U, V\right) \\
R_{1}+R_{2} & \leq I\left(X_{1}, X_{2} ; Y \mid U, V\right) \\
R_{1}+R_{2} & \leq I\left(X_{1}, X_{2}, V ; Y\right)-I(V ; S) \\
\Gamma_{k} & \geq \mathrm{E}\left[\phi_{k}\left(X_{k}\right)\right], \quad k=1,2
\end{aligned}
$$

with the Markov conditions

$$
\begin{aligned}
& X_{1}-U-X_{2} \\
& \left(X_{1}, U, X_{2}\right) \perp(V, S) \\
& V-S-Y
\end{aligned}
$$

But now, X_{1}, X_{2} can depend on S.
Replace (X_{1}, X_{2}) by $\left(U_{1}, U_{2}\right)$ independent of S, and let

$$
P_{X_{1} \mid U, U_{1}, S}, \quad P_{X_{2} \mid U, U_{2}, S}
$$

Main result

$\mathcal{R}_{\text {cau }}$ - the CH of all ($R_{1}, R_{2}, \Gamma_{1}, \Gamma_{2}$) satisfying

Outline

Problem Formulation

Strictly Causal SI

Causal SI
MAC with causal SI - main
result

- The naïve approach

Example

Independent SI streams

Summary

END

$$
\begin{aligned}
R_{1} & \leq I\left(U_{1} ; Y \mid U_{2}, U, V\right) \\
R_{2} & \leq I\left(U_{2} ; Y \mid U_{1}, U, V\right) \\
R_{1}+R_{2} & \leq I\left(U_{1}, U_{2} ; Y \mid U, V\right) \\
R_{1}+R_{2} & \leq I\left(U_{1}, U, U_{2}, V ; Y\right)-I(V ; S) \\
\Gamma_{k} & \geq \mathrm{E}\left[\phi_{k}\left(X_{k}\right)\right], \quad k=1,2
\end{aligned}
$$

for some joint distribution

$$
\begin{array}{r}
P_{U, U_{1}, U_{2}, V, X_{1}, X_{2}, S, Y}=P_{U} P_{U_{1} \mid U} P_{U_{2} \mid U} P_{V \mid S} P_{S} \\
P_{X_{1} \mid U, U_{1}, S} P_{X_{2} \mid U, U_{2}, S} P_{Y \mid S, X_{1}, X_{2}} .
\end{array}
$$

Main result

$\mathcal{R}_{\text {cau }}$ - the CH of all ($R_{1}, R_{2}, \Gamma_{1}, \Gamma_{2}$) satisfying

Outline

Problem Formulation

Strictly Causal SI

Causal SI

- MAC with causal SI - main
result
- The naïve approach

Example

Independent SI streams

Summary

END

$$
\begin{aligned}
R_{1} & \leq I\left(U_{1} ; Y \mid U_{2}, U, V\right) \\
R_{2} & \leq I\left(U_{2} ; Y \mid U_{1}, U, V\right) \\
R_{1}+R_{2} & \leq I\left(U_{1}, U_{2} ; Y \mid U, V\right) \\
R_{1}+R_{2} & \leq I\left(U_{1}, U, U_{2}, V ; Y\right)-I(V ; S) \\
\Gamma_{k} & \geq \mathrm{E}\left[\phi_{k}\left(X_{k}\right)\right], \quad k=1,2
\end{aligned}
$$

for some joint distribution

$$
\begin{array}{r}
P_{U, U_{1}, U_{2}, V, X_{1}, X_{2}, S, Y}=P_{U} P_{U_{1} \mid U} P_{U_{2} \mid U} P_{V \mid S} P_{S} \\
P_{X_{1} \mid U, U_{1}, S} P_{X_{2} \mid U, U_{2}, S} P_{Y \mid S, X_{1}, X_{2}} .
\end{array}
$$

$$
\begin{aligned}
& U_{1}-U-U_{2} \\
& V-S-Y
\end{aligned}
$$

Main result

Outline

Problem Formulation

Strictly Causal SI

Causal SI
MAC with causal SI - main
result

- The naïve approach
- Example

Independent SI streams

Summary

END

$$
\begin{aligned}
R_{1} & \leq I\left(U_{1} ; Y \mid U_{2}, U, V\right) \\
R_{2} & \leq I\left(U_{2} ; Y \mid U_{1}, U, V\right) \\
R_{1}+R_{2} & \leq I\left(U_{1}, U_{2} ; Y \mid U, V\right) \\
R_{1}+R_{2} & \leq I\left(U_{1}, U, U_{2}, V ; Y\right)-I(V ; S) \\
\Gamma_{k} & \geq \mathrm{E}\left[\phi_{k}\left(X_{k}\right)\right], \quad k=1,2
\end{aligned}
$$

for some joint distribution

$$
\begin{array}{r}
P_{U, U_{1}, U_{2}, V, X_{1}, X_{2}, S, Y}=P_{U} P_{U_{1} \mid U} P_{U_{2} \mid U} P_{V \mid S} P_{S} \\
P_{X_{1} \mid U, U_{1}, S} P_{X_{2} \mid U, U_{2}, S} P_{Y \mid S, X_{1}, X_{2}} .
\end{array}
$$

$$
\begin{aligned}
& U_{1}-U-U_{2} \\
& V-S-Y \\
& \left(U_{1}, U, U_{2}\right) \perp(V, S)
\end{aligned}
$$

Main result

Outline

Problem Formulation

Strictly Causal SI

Causal SI
MAC with causal SI - main
result

- The naïve approach
- Example

Independent SI streams

Summary

END

$$
\begin{aligned}
R_{1} & \leq I\left(U_{1} ; Y \mid U_{2}, U, V\right) \\
R_{2} & \leq I\left(U_{2} ; Y \mid U_{1}, U, V\right) \\
R_{1}+R_{2} & \leq I\left(U_{1}, U_{2} ; Y \mid U, V\right) \\
R_{1}+R_{2} & \leq I\left(U_{1}, U, U_{2}, V ; Y\right)-I(V ; S) \\
\Gamma_{k} & \geq \mathrm{E}\left[\phi_{k}\left(X_{k}\right)\right], \quad k=1,2
\end{aligned}
$$

for some joint distribution

$$
\begin{array}{r}
P_{U, U_{1}, U_{2}, V, X_{1}, X_{2}, S, Y}=P_{U} P_{U_{1} \mid U} P_{U_{2} \mid U} P_{V \mid S} P_{S} \\
P_{X_{1} \mid U, U_{1}, S} P_{X_{2} \mid U, U_{2}, S} P_{Y \mid S, X_{1}, X_{2}} .
\end{array}
$$

Theorem 2 (Causal SI) $\mathcal{R}_{\text {cau }} \subseteq \mathcal{C}_{\text {cau }}$

The naïve approach

The naïve approach - using Shannon strategies, without block Markov coding of the state.

Outline

Problem Formulation

Strictly Causal SI

Causal SI

- MAC with causal SI - main
result
- The naïve approach

Example

Independent SI streams

Summary

END

The naïve approach

The naïve approach - using Shannon strategies, without block Markov coding of the state. It leads to the region of all $\left(R_{1}, R_{2}\right)$ satisfying

Outline

Problem Formulation

Strictly Causal SI

Causal SI

- MAC with causal SI - main
result
- The naïve approach
- Example

Independent SI streams

Summary

END

$$
\begin{aligned}
R_{1} & \leq I\left(T_{1} ; Y \mid T_{2}, Q\right) \\
R_{2} & \leq I\left(T_{2} ; Y \mid T_{1}, Q\right) \\
R_{1}+R_{2} & \leq I\left(T_{1}, T_{2} ; Y \mid Q\right)
\end{aligned}
$$

for some joint distribution $P_{Q} P_{T_{1} \mid Q} P_{T_{2} \mid Q} P_{Y \mid T_{1}, T_{2}}$.

The naïve approach

Outline

Problem Formulation

Strictly Causal SI

Causal SI
MAC with causal SI - main
result
-The naïve approach

- Example

Independent SI streams

Summary

The naïve approach - using Shannon strategies, without block Markov coding of the state. It leads to the region of all $\left(R_{1}, R_{2}\right)$ satisfying

$$
\begin{aligned}
R_{1} & \leq I\left(T_{1} ; Y \mid T_{2}, Q\right) \\
R_{2} & \leq I\left(T_{2} ; Y \mid T_{1}, Q\right) \\
R_{1}+R_{2} & \leq I\left(T_{1}, T_{2} ; Y \mid Q\right)
\end{aligned}
$$

for some joint distribution $P_{Q} P_{T_{1} \mid Q} P_{T_{2} \mid Q} P_{Y \mid T_{1}, T_{2}}$. Here
$T_{k}, k=1,2$ are random Shannon strategies:
$T_{k} \in \mathcal{T}_{k}, \quad$ the set of mappings $\quad t_{k}: \mathcal{S} \rightarrow \mathcal{X}_{k}$

The naïve approach

Outline

Problem Formulation

Strictly Causal SI

Causal SI
D MAC with causal SI - main
result

- The naïve approach
- Example

Independent SI streams

Summary

END

The naïve approach - using Shannon strategies, without block Markov coding of the state. It leads to the region of all (R_{1}, R_{2}) satisfying

$$
\begin{aligned}
R_{1} & \leq I\left(T_{1} ; Y \mid T_{2}, Q\right) \\
R_{2} & \leq I\left(T_{2} ; Y \mid T_{1}, Q\right) \\
R_{1}+R_{2} & \leq I\left(T_{1}, T_{2} ; Y \mid Q\right)
\end{aligned}
$$

for some joint distribution $P_{Q} P_{T_{1} \mid Q} P_{T_{2} \mid Q} P_{Y \mid T_{1}, T_{2}}$. Here
$T_{k}, k=1,2$ are random Shannon strategies:

$$
T_{k} \in \mathcal{T}_{k}, \quad \text { the set of mappings } \quad t_{k}: \mathcal{S} \rightarrow \mathcal{X}_{k}
$$

Q is a time sharing random variable,

The naïve approach

Outline

Problem Formulation

Strictly Causal SI

Causal SI
MAC with causal SI - main
result

- The naïve approach
- Example

Independent SI streams

Summary

END

The naïve approach - using Shannon strategies, without block Markov coding of the state. It leads to the region of all $\left(R_{1}, R_{2}\right)$ satisfying

$$
\begin{aligned}
R_{1} & \leq I\left(T_{1} ; Y \mid T_{2}, Q\right) \\
R_{2} & \leq I\left(T_{2} ; Y \mid T_{1}, Q\right) \\
R_{1}+R_{2} & \leq I\left(T_{1}, T_{2} ; Y \mid Q\right)
\end{aligned}
$$

for some joint distribution $P_{Q} P_{T_{1} \mid Q} P_{T_{2} \mid Q} P_{Y \mid T_{1}, T_{2}}$. Here
$T_{k}, k=1,2$ are random Shannon strategies:

$$
T_{k} \in \mathcal{T}_{k}, \quad \text { the set of mappings } \quad t_{k}: \mathcal{S} \rightarrow \mathcal{X}_{k}
$$

Q is a time sharing random variable, and

$$
P_{Y \mid T_{1}, T_{2}}\left(y \mid t_{1}, t_{2}\right)=\sum_{s \in \mathcal{S}} P_{S}(s) P_{Y \mid S, X_{1}, X_{2}}\left(y \mid s, t_{1}(s), t_{2}(s)\right)
$$

The naïve approach

The naïve approach - using Shannon strategies, without block Markov coding of the state. It leads to the region of all $\left(R_{1}, R_{2}\right)$ satisfying

Outline

Problem Formulation

Strictly Causal SI

Causal SI

- MAC with causal SI - main
result
- The naïve approach
- Example

Independent SI streams

$$
\begin{aligned}
R_{1} & \leq I\left(T_{1} ; Y \mid T_{2}, Q\right) \\
R_{2} & \leq I\left(T_{2} ; Y \mid T_{1}, Q\right) \\
R_{1}+R_{2} & \leq I\left(T_{1}, T_{2} ; Y \mid Q\right)
\end{aligned}
$$

for some joint distribution $P_{Q} P_{T_{1} \mid Q} P_{T_{2} \mid Q} P_{Y \mid T_{1}, T_{2}}$.

We denote this region as $\mathcal{R}^{\text {naive }}$.

The naïve approach

- $\mathcal{R}_{\text {cau }}$ contains the region of the naïve approach, since we can always choose degenerate V.

Outline

Problem Formulation

Strictly Causal SI

Causal SI

- MAC with causal SI - main
result
- The naïve approach
- Example

Independent SI streams

Summary

END

- In some cases, the inclusion is strict.

Example

The noiseless binary MAC with input selector:

Outline

Problem Formulation

Strictly Causal SI

Causal SI

- MAC with causal SI - main
result
-The naïve approach
- Example

Independent SI streams

Summary

END

Example

The noiseless binary MAC with input selector:

- Outline

Problem Formulation

Strictly Causal SI

$$
\mathcal{X}_{1}=\mathcal{X}_{2}=\mathcal{Y}=\{0,1\}, \quad \mathcal{S}=\{1,2\}, \quad P_{S}(S=2)=p>0.5
$$

$$
Y=X_{S}
$$

Causal SI

- MAC with causal SI - main
result
The naïve approach
- Example

Independent SI streams

Summary

END

Example

The noiseless binary MAC with input selector:

Outline

Problem Formulation

Strictly Causal SI

Causal SI

- MAC with causal SI - main
result
-The naïve approach
- Example

Independent SI streams

Summary

END

Example

The noiseless binary MAC with input selector:

Outline

Problem Formulation

Strictly Causal SI

Causal SI
MAC with causal SI - main
result
The naïve approach

- Example

Independent SI streams

Summary

END

$$
\mathcal{X}_{1}=\mathcal{X}_{2}=\mathcal{Y}=\{0,1\}, \quad \mathcal{S}=\{1,2\}, \quad P_{S}(S=2)=p>0.5
$$

$$
Y=X_{S}
$$

- If the decoder knows S, user 1 can transmit at rate $1-p$.
- Hence, $1-p$ is an upper bound on the transmission rate of user 1 in our model.

Example

Outline

Problem Formulation

Strictly Causal SI

Causal SI

- MAC with causal SI - main
result
-The naïve approach
- Example

Independent SI streams

Summary

END

Example

Outline

Problem Formulation

Strictly Causal SI

Causal SI

- MAC with causal SI - main
result
- The naïve approach
- Example

Independent SI streams

Summary

END

With a proper choice of random variables in $\mathcal{R}_{\text {cau }}$

$$
\left(R_{1}, R_{2}\right)=\left(\min \left\{1-p, 1-H_{b}(p)\right\}, 0\right) \in \mathcal{R}_{\text {cau }}
$$

(Observe - achieves the maximal rate of user 1 for $p \geq H_{b}(p)$.)

Example

Outline

Problem Formulation

Strictly Causal SI

Causal SI

- MAC with causal SI - main
result
- The naïve approach
- Example

Independent SI streams

Summary

END

With a proper choice of random variables in $\mathcal{R}_{\text {cau }}$

$$
\left(R_{1}, R_{2}\right)=\left(\min \left\{1-p, 1-H_{b}(p)\right\}, 0\right) \in \mathcal{R}_{\text {cau }}
$$

(Observe - achieves the maximal rate of user 1 for $p \geq H_{b}(p)$.)
The maximal rate of user 1 in the naïve approach is

$$
R_{2, \max }^{\text {naive }}=\log _{2}\left(1+(1-p) p^{\frac{p}{1-p}}\right) \quad \text { bits }
$$

Example

Outline

Problem Formulation

Strictly Causal SI

Causal SI

- MAC with causal SI - main
result
- The naïve approach
- Example

Independent SI streams

Summary

END

With a proper choice of random variables in $\mathcal{R}_{\text {cau }}$

$$
\left(R_{1}, R_{2}\right)=\left(\min \left\{1-p, 1-H_{b}(p)\right\}, 0\right) \in \mathcal{R}_{\text {cau }}
$$

(Observe - achieves the maximal rate of user 1 for $p \geq H_{b}(p)$.)
The maximal rate of user 1 in the naïve approach is

$$
R_{2, \max }^{\text {naive }}=\log _{2}\left(1+(1-p) p^{\frac{p}{1-p}}\right) \quad \text { bits }
$$

For sufficiently large value of p,

$$
R_{2, \max }^{\text {naive }}<\min \left\{1-p, 1-H_{b}(p)\right\}
$$

MAC with independent SI streams

Outline

Problem Formulation

Strictly Causal SI

Causal SI

Independent SI streams MAC with independent SI streams

Summary

MAC with independent SI streams

Outline
Problem Formulation

Strictly Causal SI

Causal SI

Independent SI streams MAC with independent SI streams

Summary

- Cooperation in the compression and transmission of the state is not possible.

MAC with independent SI streams

Outline

Problem Formulation

Strictly Causal SI

Causal SI

Independent SI streams D MAC with independent SI streams

Summary

END

- Cooperation in the compression and transmission of the state is not possible.
- Yet, compression and transmission of the states to the decoder is beneficial, and enlarges the capacity region of the MAC.

MAC with independent SI streams

Outline

Problem Formulation

Strictly Causal SI

Causal SI

Independent SI streams
D MAC with independent SI streams

Summary

END

- Cooperation in the compression and transmission of the state is not possible.
- Yet, compression and transmission of the states to the decoder is beneficial, and enlarges the capacity region of the MAC.
- Utilize distributed Wyner-Ziv compression and block Markov coding (ISIT 2010).

Summary

- Derived achievable region for the MAC with common strictly causal SI, based on

Problem Formulation

Strictly Causal SI

Causal SI

Independent SI streams

Summary

END block Markov encoding of the state.

- Strictly causal SI enlarges the capacity region of the MAC.
- Extended the results to causal SI
- The new region for causal Si is strictly better that the region obtained by the naïve approach.
- Strictly causal SI is beneficial even when the states available at the encoders are independent (ISIT 2010).

Thank You!

