The Multiple Access Channel with Causal and Strictly Causal Side Information at the Encoders

Amos Lapidoth and Yossef Steinberg

Problem Formulation: The MAC with strictly causal and causal common SI

- Problem Formulation: The MAC with strictly causal and causal common SI
- An achievable region for the strictly causal model

- Problem Formulation: The MAC with strictly causal and causal common SI
- An achievable region for the strictly causal model
- Example

- Problem Formulation: The MAC with strictly causal and causal common SI
- An achievable region for the strictly causal model
- Example
- An achievable region for the causal model

- Problem Formulation: The MAC with strictly causal and causal common SI
- An achievable region for the strictly causal model
- Example
- An achievable region for the causal model
- The naïve approach

- Problem Formulation: The MAC with strictly causal and causal common SI
- An achievable region for the strictly causal model
- Example
- An achievable region for the causal model
- The naïve approach
- Example

- Problem Formulation: The MAC with strictly causal and causal common SI
- An achievable region for the strictly causal model
- Example
- An achievable region for the causal model
- The naïve approach
- Example
- Two independent states

MAC with strictly causal side information (SI):

MAC with strictly causal side information (SI):

• One state sequence S^n , available to the encoders in a strictly causal manner:

$$X_{1,i} = f_{1,i}(m_1, S^{i-1}), \quad X_{2,i} = f_{2,i}(m_2, S^{i-1}), \quad i = 1, \dots, n$$

MAC with strictly causal side information (SI):

• One state sequence S^n , available to the encoders in a strictly causal manner:

$$X_{1,i} = f_{1,i}(m_1, S^{i-1}), \quad X_{2,i} = f_{2,i}(m_2, S^{i-1}), \quad i = 1, \dots, n$$
$$(\hat{m}_1, \hat{m}_2) = g(Y^n)$$

MAC with strictly causal side information (SI):

• One state sequence S^n , available to the encoders in a strictly causal manner:

$$X_{1,i} = f_{1,i}(m_1, S^{i-1}), \quad X_{2,i} = f_{2,i}(m_2, S^{i-1}), \quad i = 1, \dots, n$$
$$(\hat{m}_1, \hat{m}_2) = g(Y^n)$$

• Transmission is subject to input constraints $\frac{1}{n} \sum_{i=1}^{n} \phi_k(X_{k,i}) \leq \Gamma_k$, k = 1, 2.

MAC with strictly causal side information (SI):

• One state sequence S^n , available to the encoders in a strictly causal manner:

$$X_{1,i} = f_{1,i}(m_1, S^{i-1}), \quad X_{2,i} = f_{2,i}(m_2, S^{i-1}), \quad i = 1, \dots, n$$

$$(\hat{m}_1, \hat{m}_2) = g(Y^n)$$

• Transmission is subject to input constraints $\frac{1}{n} \sum_{i=1}^{n} \phi_k(X_{k,i}) \leq \Gamma_k$, k = 1, 2.

• Memoryless, time invariant channel and state $P_{Y|S,X_1,X_2}$, P_S .

MAC with strictly causal side information (SI):

We are interested in \mathcal{C}_{s-c} , the region of all achievable rate and cost pairs

 $(R_1, R_2, \Gamma_1, \Gamma_2).$

MAC with strictly causal side information (SI):

We are interested in C_{s-c} , the region of all achievable rate and cost pairs

 $(R_1, R_2, \Gamma_1, \Gamma_2).$

 $C_{s-c}(\Gamma_1,\Gamma_2)$ – the collection of all rate pairs (R_1,R_2) such that

 $(R_1, R_2, \Gamma_1, \Gamma_2) \in \mathcal{C}_{s-c}.$

• One state sequence S^n , available to the encoders in a causal manner:

$$X_{1,i} = f_{1,i}(m_1, \mathbf{S}^i), \quad X_{2,i} = f_{2,i}(m_2, \mathbf{S}^i), \quad i = 1, \dots, n$$
$$(\hat{m}_1, \hat{m}_2) = g(Y^n)$$

• Transmission is subject to input constraints $\frac{1}{n} \sum_{i=1}^{n} \phi_k(X_{k,i}) \leq \Gamma_k$, k = 1, 2.

• Memoryless, time invariant channel and state $P_{Y|S,X_1,X_2}$, P_S .

We are interested in C_{cau} , the region of all achievable rate and cost pairs

 $(R_1, R_2, \Gamma_1, \Gamma_2).$

 $C_{cau}(\Gamma_1,\Gamma_2)$ – the collection of all rate pairs (R_1,R_2) such that

 $(R_1, R_2, \Gamma_1, \Gamma_2) \in \mathcal{C}_{cau}.$

- Strictly causal SI does not increase the capacity of the single user channel

Outline

Problem Formulation

Strictly Causal SI Single user and BC with SC SI MAC with SC SI - main result The coding scheme

Example

Causal SI

Independent SI streams

Summary

- Strictly causal SI does not increase the capacity of the single user channel

Outline

Problem Formulation	
Strictly Causal SI Single user and BC with SC SI MAC with SC SI - main result The coding scheme Example	
Causal SI	
Independent SI streams	
Summary	
END	

$$nR - n\epsilon_n \leq I(M; Y^n) = \sum_{i=1}^n I(M; Y_i | Y^{i-1})$$
$$\leq \sum_{i=1}^n I(M, Y^{i-1}; Y_i)$$
$$\leq \sum_{i=1}^n I(M, Y^{i-1}, X_i; Y_i)$$

$$= \sum_{i=1}^{n} I(X_i; Y_i)$$

$$\leq \max_{P_X} I(X;Y) = nC$$

where C is the capacity without SI.

- Strictly causal SI does not increase the capacity of the single user channel (a reminiscent of the situation in feedback capacity)

Outline

Problem Formulation

Strictly Causal SI Single user and BC with SC SI MAC with SC SI - main result The coding scheme Example

Causal SI

Independent SI streams

Summary

- Strictly causal SI does not increase the capacity of the single user channel (a reminiscent of the situation in feedback capacity)

- Transmission of the state (or compressed version thereof) to the other side is sub optimal: waste of precious rate, without increase in capacity.

Outline

Problem Formulation

Strictly Causal SI Single user and BC with SC SI MAC with SC SI - main result The coding scheme Example

Causal SI

Independent SI streams

Summary

An example by Dueck (1980): A non degraded additive noise BC with feedback.
 The noise is common to the two channels.

Outline

Problem Formulation

Strictly Causal SI Single user and BC with SC SI MAC with SC SI - main result The coding scheme Example

Causal SI

Independent SI streams

Summary

- An example by Dueck (1980): A non degraded additive noise BC with feedback.
 The noise is common to the two channels.
 - > The encoder transmits the noise to the two users, uncompressed.

Outline

Problem Formulation

Strictly Causal SI Single user and BC with SC SI MAC with SC SI - main result The coding scheme Example

Causal SI

Independent SI streams

Summary

An example by Dueck (1980): A non degraded additive noise BC with feedback.
 The noise is common to the two channels.

> The encoder transmits the noise to the two users, uncompressed.

Knowledge of the additive noise at the decoder facilitates decoding of the messages.

Outline

Problem Formulation

Strictly Causal SI Single user and BC with SC SI MAC with SC SI - main result The coding scheme Example

Causal SI

Independent SI streams

Summary

An example by Dueck (1980): A non degraded additive noise BC with feedback.
 The noise is common to the two channels.

- > The encoder transmits the noise to the two users, uncompressed.
- Knowledge of the additive noise at the decoder facilitates decoding of the messages.
- Although precious rate is spent on transmitting the noise, the net effect is an increase in the capacity region.

Outline

Problem Formulation

Strictly Causal SI Single user and BC with SC SI MAC with SC SI - main result The coding scheme Example

Causal SI

Independent SI streams

Summary

An example by Dueck (1980): A non degraded additive noise BC with feedback.
 The noise is common to the two channels.

- > The encoder transmits the noise to the two users, uncompressed.
- Knowledge of the additive noise at the decoder facilitates decoding of the messages.
- Although precious rate is spent on transmitting the noise, the net effect is an increase in the capacity region.
- Yields gains in capacity also when only lossy transmission of the noise is possible.

Outline

Problem Formulation

Strictly Causal SI Single user and BC with SC SI MAC with SC SI - main result The coding scheme Example

Causal SI

Independent SI streams

Summary

An example by Dueck (1980): A non degraded additive noise BC with feedback.
 The noise is common to the two channels.

- > The encoder transmits the noise to the two users, uncompressed.
- Knowledge of the additive noise at the decoder facilitates decoding of the messages.
- Although precious rate is spent on transmitting the noise, the net effect is an increase in the capacity region.
- Yields gains in capacity also when only lossy transmission of the noise is possible.
- In the MAC: The two users can *cooperate* in transmitting the noise (state) to the decoder.

Outline

Problem Formulation

Strictly Causal SI Single user and BC with SC SI MAC with SC SI - main result The coding scheme Example

Causal SI

Independent SI streams

Summary

MAC with SC SI

 \mathcal{R}_{s-c} - the CH of all $(R_1, R_2, \Gamma_1, \Gamma_2)$ satisfying

▶ Outline	R_1	\leq	$I(X_1; Y X_2, U, V)$
Problem Formulation	R_2	\leq	$I(X_2; Y X_1, U, V)$
Strictly Causal SI	$R_1 + R_2$	\leq	$I(X_1, X_2; Y U, V)$
Single user and BC with	$B_1 \perp B_2$	<	$I(X_1, X_2, V; Y) - I(V; S)$
SC SI	$n_1 + n_2$	\geq	$I(X_1, X_2, V, I) = I(V, D)$
MAC with SC SI - main result	Γ_{L}	>	$E[\phi_k(X_k)], k = 1, 2$
The coding scheme	⊥ <i>K</i>	<u>´</u>	$= [\varphi \kappa (1 \kappa)], n = 1, 2$

for some joint distribution

Causal SI

Example

Independent SI streams

Summary

$$P_{U,V,X_1,X_2,S,Y} = P_S P_{X_1|U} P_{X_2|U} P_U P_{V|S} P_{Y|S,X_1,X_2}.$$

MAC with SC SI

 \mathcal{R}_{s-c} - the CH of all $(R_1, R_2, \Gamma_1, \Gamma_2)$ satisfying

▶Outline	R_1	\leq	$I(X_1; Y X_2, U, V)$
Problem Formulation	R_2	\leq	$I(X_2; Y X_1, U, V)$
Strictly Causal SI	$R_1 + R_2$	\leq	$I(X_1, X_2; Y U, V)$
Single user and BC with	$B_1 \perp B_2$	<	$I(X_1, X_2, V; Y) - I(V; S)$
SC SI	$n t_1 + n t_2$	<u> </u>	$I(X_1, X_2, V, I) = I(V, D)$
MAC with SC SI - main result	Γ_{L}	>	$E[\phi_k(X_k)], k = 1, 2$
The coding scheme	⊥ <i>K</i>	_	$= [\varphi_{\kappa}(1,\kappa)], n = 1, 2$

for some joint distribution

Causal SI

Example

Independent SI streams

Summary

END

 $X_1 - U - X_2$ $(X_1, U, X_2) \perp (V, S)$

MAC with SC SI

 \mathcal{R}_{s-c} - the CH of all $(R_1, R_2, \Gamma_1, \Gamma_2)$ satisfying

▶ Outline	R_1	\leq	$I(X_1; Y X_2, U, V)$
Problem Formulation	R_2	\leq	$I(X_2; Y X_1, U, V)$
Strictly Causal SI	$R_1 + R_2$	\leq	$I(X_1, X_2; Y U, V)$
Single user and BC with	$B_{1} + B_{2}$	<	$I(X_1, X_2, V; Y) - I(V; S)$
SC SI	$n_1 + n_2$	\geq	$I(X_1, X_2, V, I) = I(V, S)$
MAC with SC SI - main	Г,	>	$E[\phi_k(X_k)], k = 1, 2$
result ▶The coding scheme	1_{k}	\leq	

for some joint distribution

Causal SI

Example

Independent SI streams

Summary

END

$$P_{U,V,X_1,X_2,S,Y} = P_S P_{X_1|U} P_{X_2|U} P_U P_{V|S} P_{Y|S,X_1,X_2}.$$

 $X_1 - U - X_2$ $(X_1, U, X_2) \perp (V, S)$ V - S - Y

 \mathcal{R}_{s-c} - the CH of all $(R_1, R_2, \Gamma_1, \Gamma_2)$ satisfying

▶Outline	R_1	\leq	$I(X_1; Y X_2, U, V)$
Problem Formulation	R_2	\leq	$I(X_2; Y X_1, U, V)$
Strictly Causal SI	$R_1 + R_2$	\leq	$I(X_1, X_2; Y U, V)$
Single user and BC with	$B_1 \perp B_2$	<	$I(X_1, X_2, V; Y) - I(V; S)$
SC SI	$n t_1 + n t_2$	\geq	$I(X_1, X_2, V, I) = I(V, D)$
MAC with SC SI - main result	Γ_{L}	>	$E[\phi_k(X_k)], \qquad k = 1, 2$
The coding scheme	- <i>K</i>	<u>_</u>	$\mathbf{L}[\varphi_{\mathcal{K}}(1_{\mathcal{K}})], \mathcal{H} = 1, 2$

for some joint distribution

Causal SI

Example

Independent SI streams

Summary

END

Л	ם ת	Л	ם ם

$$P_{U,V,X_1,X_2,S,Y} = P_S P_{X_1|U} P_{X_2|U} P_U P_{V|S} P_{Y|S,X_1,X_2}.$$

Theorem 1 (Strictly-Causal SI) $\mathcal{R}_{s-c} \subseteq \mathcal{C}_{s-c}$

We can write $\mathcal{R}_{\mbox{\tiny s-c}}$ as

▶ Outline	R_1	\leq	$I(X_1; Y X_2, U, V)$
Problem Formulation	R_2	\leq	$I(X_2; Y X_1, U, V)$
Strictly Causal SI	$R_1 + R_2$	\leq	$I(X_1, X_2; Y U, V)$
Single user and BC with SC SI	$R_0 + R_1 + R_2$	\leq	$I(X_1, X_2; Y V)$
 MAC with SC SI - main result The coding scheme 	R_0	\geq	I(V;S) - I(V;Y).
Example	Γ_k	\geq	$E[\phi_k(X_k)],\qquad k=1,2$

Causal SI

Independent SI streams

Summary

	We	can	write	\mathcal{R}_{s-c}	as
--	----	-----	-------	---------------------	----

▶ Outline	R_1	\leq	$I(X_1; Y X_2, U, V)$
Problem Formulation	R_2	\leq	$I(X_2; Y X_1, U, V)$
Strictly Causal SI	$R_1 + R_2$	\leq	$I(X_1, X_2; Y U, V)$
Single user and BC with SC SI	$R_0 + R_1 + R_2$	\leq	$I(X_1, X_2; Y V)$
MAC with SC SI - main result	R_0	\geq	I(V;S) - I(V;Y).
 The coding scheme Example 	Γ_k	\geq	$E[\phi_k(X_k)],\qquad k=1,2$

A block Markov sc	heme:
-------------------	-------

Independent SI streams

Summary

We can write $\mathcal{R}_{\text{s-c}}$ as

▶ Outline	R_1	\leq	$I(X_1; Y X_2, U, V)$
Problem Formulation	R_2	\leq	$I(X_2; Y X_1, U, V)$
Strictly Causal SI	$R_1 + R_2$	\leq	$I(X_1, X_2; Y U, V)$
Single user and BC with SC SI	$R_0 + R_1 + R_2$	\leq	$I(X_1, X_2; Y V)$
MAC with SC SI - main result	R_0	\geq	I(V;S) - I(V;Y).
 The coding scheme Example 	Γ_k	\geq	$E[\phi_k(X_k)],\qquad k=1,2$

Causal SI

Independent SI streams

Summary

END

A block Markov scheme:

The state sequence Sⁿ is compressed by a Wyner-Ziv scheme, with coding random variable V, and decoder side information Yⁿ.

We can write $\mathcal{R}_{\text{s-c}}$ as

▶ Outline	R_1	\leq	$I(X_1; Y X_2, U, V)$
Problem Formulation	R_2	\leq	$I(X_2; Y X_1, U, V)$
Strictly Causal SI	$R_1 + R_2$	\leq	$I(X_1, X_2; Y U, V)$
Single user and BC with SC SI	$R_0 + R_1 + R_2$	\leq	$I(X_1, X_2; Y V)$
MAC with SC SI - main result	R_0	\geq	I(V;S) - I(V;Y).
 The coding scheme Example 	Γ_k	\geq	$E[\phi_k(X_k)],\qquad k=1,2$

Causal SI

Independent SI streams

Summary

END

A block Markov scheme:

• The state sequence S^n is compressed by a Wyner-Ziv scheme, with coding random variable V, and decoder side information Y^n .

V - S - Y

We can write \mathcal{R}_{s-c} as

▶ Outline	R_1	\leq	$I(X_1; Y X_2, U, V)$
Problem Formulation	R_2	\leq	$I(X_2; Y X_1, U, V)$
Strictly Causal SI	$R_1 + R_2$	\leq	$I(X_1, X_2; Y U, V)$
Single user and BC with	$R_0 + R_1 + R_2$	\leq	$I(X_1, X_2; Y V)$
MAC with SC SI - main result	R_0	\geq	I(V;S) - I(V;Y).
 The coding scheme Example 	Γ_k	\geq	$E[\phi_k(X_k)],\qquad k=1,2$

A block Markov scheme:

Independent SI streams

Summary

Causal SI

END

The state sequence Sⁿ is compressed by a Wyner-Ziv scheme, with coding random variable V, and decoder side information Yⁿ.

V - S - Y

 The compressed state is transmitted to the decoder in the *next transmission* block as a common message, together with the independent messages m₁, m₂.

We can write \mathcal{R}_{s-c} as

▶ Outline	R_1	\leq	$I(X_1; Y X_2, U, V)$
Problem Formulation	R_2	\leq	$I(X_2; Y X_1, U, V)$
Strictly Causal SI	$R_1 + R_2$	\leq	$I(X_1, X_2; Y U, V)$
Single user and BC with SC SI	$R_0 + R_1 + R_2$	\leq	$I(X_1, X_2; Y V)$
MAC with SC SI - main result	R_0	\geq	I(V;S) - I(V;Y).
 The coding scheme Example 	Γ_k	\geq	$E[\phi_k(X_k)],\qquad k=1,2$

Independent SI streams

Summary

Causal SI

END

A block Markov scheme:

► The state sequence Sⁿ is compressed by a Wyner-Ziv scheme, with coding random variable V, and decoder side information Yⁿ.

V - S - Y

 The compressed state is transmitted to the decoder in the *next transmission* block as a common message, together with the independent messages m₁, m₂.

 $X_1 - U - X_2$, independent of (V, S).

We can write \mathcal{R}_{s-c} as

▶ Outline	R_1	\leq	$I(X_1; Y X_2, U, V)$
Problem Formulation	R_2	\leq	$I(X_2; Y X_1, U, V)$
Strictly Causal SI	$R_1 + R_2$	\leq	$I(X_1, X_2; Y U, V)$
Single user and BC with SC SI	$R_0 + R_1 + R_2$	\leq	$I(X_1, X_2; Y V)$
MAC with SC SI - main result	R_0	\geq	I(V;S) - I(V;Y).
 The coding scheme Example 	Γ_k	\geq	$E[\phi_k(X_k)],\qquad k=1,2$

Causal SI

A block Markov scheme:

Independent SI streams

Summary

END

• The state sequence S^n is compressed by a Wyner-Ziv scheme, with coding random variable V, and decoder side information Y^n .

V - S - Y

• The compressed state is transmitted to the decoder in the *next transmission* block as a common message, together with the independent messages m_1 , m_2 .

```
X_1 - U - X_2, independent of (V, S).
```

The two codes are decoupled.

The total transmission time is divided into B + 1 blocks, each of length n.

Outline

Problem Formulation

Strictly Causal SI

 Single user and BC with SC SI
 MAC with SC SI - main result

The coding scheme

Example

Causal SI

Independent SI streams

Summary

	The total transmission time is divided into $B + 1$ blocks, each of length n .
▶Outline	First block - User 1 and User 2 transmit messages at rate R_1 and R_2 .
Problem Formulation	
Strictly Causal SI Single user and BC with SC SI MAC with SC SI - main result The coding scheme	
▶Example Causal SI	
Independent SI streams	
Summary	
END	

The total transmission time is divided into B + 1 blocks, each of length n.

First block - User 1 and User 2 transmit messages at rate R_1 and R_2 .

• Block $b \in [2:B]$: the users cooperatively transmit a common message at rate R_0 , and superimpose on it their private messages at rates R_1 , R_2 .

Outline

Problem Formulation

Strictly Causal SI Single user and BC with SC SI MAC with SC SI - main result The coding scheme Example

Causal SI

Independent SI streams

Summary

The total transmission time is divided into B + 1 blocks, each of length n.

First block - User 1 and User 2 transmit messages at rate R_1 and R_2 .

• Block $b \in [2:B]$: the users cooperatively transmit a common message at rate R_0 , and superimpose on it their private messages at rates R_1 , R_2 .

The common message consists of a Wyner-Ziv codeword of the state in previous block, b - 1.

Outline

Problem Formulation

Strictly Causal SI

 Single user and BC with SC SI
 MAC with SC SI - main result
 The coding scheme

Example

Causal SI

Independent SI streams

Summary

▶ Example	/	Ine
Causal SI		
Independent SI streams		
Summary		
END		

Outline

SC SI

result

Problem Formulation

Single user and BC with

MAC with SC SI - main

The coding scheme

Strictly Causal SI

The total transmission time is divided into B + 1 blocks, each of length n.

First block - User 1 and User 2 transmit messages at rate R_1 and R_2 .

• Block $b \in [2:B]$: the users cooperatively transmit a common message at rate R_0 , and superimpose on it their private messages at rates R_1 , R_2 .

The common message consists of a Wyner-Ziv codeword of the state in previous block, b - 1.

The channel output at block b - 1 serves as the decoder's SI.

▶ Outline	
Problem Formulation	• Block $b \in [2:B]$: the
	R_0 , and superimpose
Strictly Causal SI Single user and BC with	The common mes
SC SI	
MAC with SC SI - main	previous block, b
result	•
 The coding scheme Example 	The channel outp
* Example	
Causal SI	The Wyner-Ziv co
Independent SI streams	

Summary

END

The total transmission time is divided into B + 1 blocks, each of length n.

First block - User 1 and User 2 transmit messages at rate R_1 and R_2 .

Block $b \in [2:B]$: the users cooperatively transmit a common message at rate R_0 , and superimpose on it their private messages at rates R_1 , R_2 .

The common message consists of a Wyner-Ziv codeword of the state in previous block, b - 1.

> The channel output at block b - 1 serves as the decoder's SI.

> The Wyner-Ziv codeword is independent of the state during its transmission.

ine coung

The total transmission time is divided into B + 1 blocks, each of length n.

▶Outline	First block - User 1 and User 2 transmit messages at rate R_1 and R_2 .
Problem Formulation	Block $b \in [2:B]$: the users cooperatively transmit a common message at rate
	R_0 , and superimpose on it their private messages at rates R_1 , R_2 .
Strictly Causal SI Single user and BC with	The common message consists of a Wyner-Ziv codeword of the state in
SC SI ▶MAC with SC SI - main result	previous block, $b-1$.
 The coding scheme Example 	> The channel output at block $b - 1$ serves as the decoder's SI.
Causal SI	The Wyner-Ziv codeword is independent of the state during its transmission.
Independent SI streams	Block $B + 1$: The users do not transmit private information. Transmit only the
Summary	common message, consisting of the Wyner-Ziv codeword of the state in block B .

▶Outline	First block - User 1 and User 2 transmit messages at rate R_1 and R_2 .
Problem Formulation	Block $b \in [2:B]$: the users cooperatively transmit a common message at rate
	R_0 , and superimpose on it their private messages at rates R_1 , R_2 .
Strictly Causal SI Single user and BC with SC SI 	The common message consists of a Wyner-Ziv codeword of the state in
MAC with SC SI - main	previous block, $b - 1$.
 The coding scheme Example 	For the channel output at block $b-1$ serves as the decoder's SI.
Causal SI	The Wyner-Ziv codeword is independent of the state during its transmission.
Independent SI streams	Block $B + 1$: The users do not transmit private information. Transmit only the
Summary	common message, consisting of the Wyner-Ziv codeword of the state in block B .
END	

Backward decoding: In block B + 1, the decoder decodes the state of block B, using the output of block B as side information.

The total transmission time is divided into B + 1 blocks, each of length n.

▶Outline	First block - User 1 and User 2 transmit messages at rate R_1 and R_2 .
Problem Formulation	Block $b \in [2:B]$: the users cooperatively transmit a common message at rate
	R_0 , and superimpose on it their private messages at rates R_1 , R_2 .
Strictly Causal SI Single user and BC with	The common message consists of a Wyner-Ziv codeword of the state in
SC SI MAC with SC SI - main result	previous block, $b-1$.
 The coding scheme Example 	> The channel output at block $b - 1$ serves as the decoder's SI.
Causal SI	The Wyner-Ziv codeword is independent of the state during its transmission.
Independent SI streams	Block $B + 1$: The users do not transmit private information. Transmit only the
	common message, consisting of the Wyner-Ziv codeword of the state in block B .
Summary	
END	

Backward decoding: In block B + 1, the decoder decodes the state of block B, using the output of block B as side information.

The total transmission time is divided into B + 1 blocks, each of length n.

▶ The decoded state of block B is used to decode the messages sent at block B: private messages, and compressed state of block B − 1....

The Gaussian MAC where the state comprises the channel noise

Outline

Problem Formulation

Strictly Causal SI

Single user and BC with SC SI
MAC with SC SI - main result
The coding scheme
Example

Causal SI

Independent SI streams

Summary

END

$$\begin{split} Y &= X_1 + X_2 + S, \qquad S \sim \mathcal{N}\left(0, \sigma_s^2\right) \\ \mathsf{E}\left[X_1^2\right] &\leq \Gamma_1, \qquad \mathsf{E}\left[X_2^2\right] \leq \Gamma_2. \end{split}$$

The Gaussian MAC where the state comprises the channel noise

Outline

Problem Formulation

Strictly Causal SI

Single user and BC with SC SI MAC with SC SI - main result ▶ The coding scheme

Example

Causal SI

Independent SI streams

Summary

END

 $C_{s-c}(\Gamma_1,\Gamma_2)$ is the collection of all rate-pairs (R_1,R_2) satisfying

$$R_1 + R_2 \le \frac{1}{2} \log \left(1 + \frac{(\Gamma_1^{\frac{1}{2}} + \Gamma_2^{\frac{1}{2}})^2}{\sigma_s^2} \right)$$

 $\mathsf{E}\left[X_1^2\right] \leq \Gamma_1, \qquad \mathsf{E}\left[X_2^2\right] \leq \Gamma_2.$

 $Y = X_1 + X_2 + S, \qquad S \sim \mathcal{N}\left(0, \sigma_s^2\right)$

Independent SI streams

SC SI

result

▶ The coding scheme

Example

Causal SI

Problem Formulation

Strictly Causal SI Single user and BC with

MAC with SC SI - main

Outline

Summary

END

 $Y = X_1 + X_2 + S, \qquad S \sim \mathcal{N}\left(0, \sigma_s^2\right)$ $\mathsf{E}\left[X_1^2\right] \leq \Gamma_1, \qquad \mathsf{E}\left[X_2^2\right] \leq \Gamma_2.$

 $C_{s-c}(\Gamma_1,\Gamma_2)$ is the collection of all rate-pairs (R_1,R_2) satisfying

The Gaussian MAC where the state comprises the channel noise

$$R_1 + R_2 \le \frac{1}{2} \log \left(1 + \frac{(\Gamma_1^{\frac{1}{2}} + \Gamma_2^{\frac{1}{2}})^2}{\sigma_s^2} \right)$$

I.e., the full cooperation line can be achieved.

Lapidoth & Steinberg, IZS 2010

The Gaussian MAC where the state comprises the channel noise

Example

Problem Formulation

Strictly Causal SI

```
Single user and BC with
SC SI
MAC with SC SI - main
result
The coding scheme
```

Example

Causal SI

Independent SI streams

Summary

END

 $\mathsf{E}\left[X_1^2\right] \leq \Gamma_1, \qquad \mathsf{E}\left[X_2^2\right] \leq \Gamma_2.$ $\mathcal{C}_{\text{s-c}}(\Gamma_1, \Gamma_2) \text{ is the collection of all rate-pairs } (R_1, R_2) \text{ satisfying}$

$$R_1 + R_2 \le \frac{1}{2} \log \left(1 + \frac{(\Gamma_1^{\frac{1}{2}} + \Gamma_2^{\frac{1}{2}})^2}{\sigma_s^2} \right)$$

 $Y = X_1 + X_2 + S, \qquad S \sim \mathcal{N}\left(0, \sigma_s^2\right)$

I.e., the full cooperation line can be achieved.

Proof:

- p. 13/23

The Gaussian MAC where the state comprises the channel noise

Problem Formulation

Strictly Causal SI

Single user and BC with SC SI
MAC with SC SI - main result
The coding scheme
Example

Causal SI

Independent SI streams

Summary

END

 $\mathsf{E}\left[X_1^2\right] \leq \Gamma_1, \qquad \mathsf{E}\left[X_2^2\right] \leq \Gamma_2.$ $\mathcal{C}_{\text{s-c}}(\Gamma_1, \Gamma_2) \text{ is the collection of all rate-pairs } (R_1, R_2) \text{ satisfying}$

$$R_1 + R_2 \le \frac{1}{2} \log \left(1 + \frac{(\Gamma_1^{\frac{1}{2}} + \Gamma_2^{\frac{1}{2}})^2}{\sigma_s^2} \right)$$

 $Y = X_1 + X_2 + S, \qquad S \sim \mathcal{N}\left(0, \sigma_s^2\right)$

I.e., the full cooperation line can be achieved.

Proof:

Converse. Since strictly causal SI does not increase the capacity of the single user channel, full cooperation is an upper bound.

The Gaussian MAC where the state comprises the channel noise

Example

Outline

Problem Formulation

Strictly Causal SI

Single user and BC with SC SI
MAC with SC SI - main result
The coding scheme
Example

Causal SI

Independent SI streams

Summary

END

$Y = X_1 + X_2 + S, \qquad S \sim \mathcal{N}\left(0, \sigma_s^2\right)$ $\mathsf{E}\left[X_1^2\right] \le \Gamma_1, \qquad \mathsf{E}\left[X_2^2\right] \le \Gamma_2.$

 $\mathcal{C}_{s-c}(\Gamma_1,\Gamma_2)$ is the collection of all rate-pairs (R_1,R_2) satisfying

$$R_1 + R_2 \le \frac{1}{2} \log \left(1 + \frac{(\Gamma_1^{\frac{1}{2}} + \Gamma_2^{\frac{1}{2}})^2}{\sigma_s^2} \right)$$

I.e., the full cooperation line can be achieved.

Proof:

Converse. Since strictly causal SI does not increase the capacity of the single user channel, full cooperation is an upper bound.

Direct part. Two methods:

Causal SI

Example

Outline

SC SI

result

Problem Formulation

MAC with SC SI - main

The coding scheme

Strictly Causal SI Single user and BC with

Independent SI streams

Summary

END

Example

The Gaussian MAC where the state comprises the channel noise

$$Y = X_1 + X_2 + S, \qquad S \sim \mathcal{N}\left(0, \sigma_s^2\right)$$
$$\mathsf{E}\left[X_1^2\right] \le \Gamma_1, \qquad \mathsf{E}\left[X_2^2\right] \le \Gamma_2.$$

 $C_{s-c}(\Gamma_1,\Gamma_2)$ is the collection of all rate-pairs (R_1,R_2) satisfying

$$R_1 + R_2 \le \frac{1}{2} \log \left(1 + \frac{(\Gamma_1^{\frac{1}{2}} + \Gamma_2^{\frac{1}{2}})^2}{\sigma_s^2} \right)$$

I.e., the full cooperation line can be achieved.

Proof:

Converse. Since strictly causal SI does not increase the capacity of the single user channel, full cooperation is an upper bound.

Direct part. Two methods:

Good choice of random variables in our achievability region R_{s-c}. (In some cases, R_{s-c} is tight.)

Proof:

END

Outline

SC SI

result

Example

Causal SI

Summary

Problem Formulation

MAC with SC SI - main

The coding scheme

Independent SI streams

Strictly Causal SI Single user and BC with

Lapidoth & Steinberg, IZS 2010

The Gaussian MAC where the state comprises the channel noise

$$Y = X_1 + X_2 + S, \qquad S \sim \mathcal{N}\left(0, \sigma_s^2\right)$$
$$\mathsf{E}\left[X_1^2\right] \le \Gamma_1, \qquad \mathsf{E}\left[X_2^2\right] \le \Gamma_2.$$

 $\mathcal{C}_{s-c}(\Gamma_1,\Gamma_2)$ is the collection of all rate-pairs (R_1,R_2) satisfying

$$R_1 + R_2 \le \frac{1}{2} \log \left(1 + \frac{(\Gamma_1^{\frac{1}{2}} + \Gamma_2^{\frac{1}{2}})^2}{\sigma_s^2} \right)$$

I.e., the full cooperation line can be achieved.

Converse. Since strictly causal SI does not increase the capacity of the single user channel, full cooperation is an upper bound.

Direct part. Two methods:

Example

- Good choice of random variables in our achievability region R_{s-c}. (In some cases, R_{s-c} is tight.)
- A Schalkwijk-Kailath algorithm

The region we had for the strictly causal case is still achievable

▶ Outline	R_1	\leq	$I(X_1; Y X_2, U, V)$
Problem Formulation	R_2	\leq	$I(X_2; Y X_1, U, V)$
Strictly Causal SI	$R_1 + R_2$	\leq	$I(X_1, X_2; Y U, V)$
Causal SI	$R_1 + R_2$	\leq	$I(X_1, X_2, V; Y) - I(V; S)$
MAC with causal SI - main result	Γ_k	\geq	$E[\phi_k(X_k)],\qquad k=1,2$
Causal SI ▶MAC with causal SI - main	$R_1 + R_2$	\leq	$I(X_1, X_2, V; Y) - I(V$

with the Markov conditions

Independent SI streams

Summary

Example

END

 $X_1 - U - X_2$ $(X_1, U, X_2) \perp (V, S)$ V - S - Y

The region we had for the strictly causal case is still achievable

▶ Outline	R_1	\leq	$I(X_1; Y X_2, U, V)$
Problem Formulation	R_2	\leq	$I(X_2; Y X_1, U, V)$
Strictly Causal SI	$R_1 + R_2$	\leq	$I(X_1, X_2; Y U, V)$
Causal SI	$R_1 + R_2$	\leq	$I(X_1, X_2, V; Y) - I(V; S)$
MAC with causal SI - main	Γ_k	\geq	$E[\phi_k(X_k)],\qquad k=1,2$
 The naïve approach Example 	with the Markov conditions		

$$X_1 - U - X_2$$
$$(X_1, U, X_2) \perp (V, S)$$
$$V - S - Y$$

But now, X_1 , X_2 can depend on S.

Independent SI streams

Summary

The region we had for the strictly causal case is still achievable

▶Outline	R_1	\leq	$I(X_1; Y X_2, U, V)$
Problem Formulation	R_2	\leq	$I(X_2; Y X_1, U, V)$
Strictly Causal SI	$R_1 + R_2$	\leq	$I(X_1, X_2; Y U, V)$
Causal SI	$R_1 + R_2$	\leq	$I(X_1, X_2, V; Y) - I(V; S)$
MAC with causal SI - main result	Γ_k	\geq	$E[\phi_k(X_k)],\qquad k=1,2$
The naïve approach			

with the Markov conditions

Independent SI streams

Summary

Example

END

$X_1 - U - X_2$
$(X_1, U, X_2) \perp (V, S)$
V - S - Y

But now, X_1 , X_2 can depend on S.

 \Rightarrow Use Shannon strategies on top of our block Markov scheme.

The region we had for the strictly causal case is still achievable

▶ Outline	R_1	\leq	$I(X_1; Y X_2, U, V)$
Problem Formulation	R_2	\leq	$I(X_2; Y X_1, U, V)$
Strictly Causal SI	$R_1 + R_2$	\leq	$I(X_1, X_2; Y U, V)$
Causal SI	$R_1 + R_2$	\leq	$I(X_1, X_2, V; Y) - I(V; S)$
MAC with causal SI - main	Γ_k	\geq	$E[\phi_k(X_k)],\qquad k=1,2$
The naïve approach			
Example	with the Markov conditions		

Independent SI streams

Summary

END

 $X_1 - U - X_2$ $(X_1, U, X_2) \perp (V, S)$ V - S - Y

But now, X_1 , X_2 can depend on S.

Replace (X_1, X_2) by (U_1, U_2) independent of S, and let

 $P_{X_1|U,U_1,S}, P_{X_2|U,U_2,S}$

 \mathcal{R}_{cau} - the CH of all $(R_1, R_2, \Gamma_1, \Gamma_2)$ satisfying

Outline

Problem Formulation

Strictly Causal SI

Causal SI

MAC with causal SI - main

result

The naïve approach

Example

$$\begin{split} R_1 &\leq I(U_1; Y | U_2, U, V) \\ R_2 &\leq I(U_2; Y | U_1, U, V) \\ R_1 + R_2 &\leq I(U_1, U_2; Y | U, V) \\ R_1 + R_2 &\leq I(U_1, U, U_2, V; Y) - I(V; S) \\ \Gamma_k &\geq \mathsf{E}[\phi_k(X_k)], \qquad k = 1, 2 \end{split}$$

for some joint distribution

Independent SI streams

Summary

$$\begin{aligned} P_{U,U_1,U_2,V,X_1,X_2,S,Y} &= P_U P_{U_1|U} P_{U_2|U} P_{V|S} P_S \cdot \\ & P_{X_1|U,U_1,S} P_{X_2|U,U_2,S} P_{Y|S,X_1,X_2} \end{aligned}$$

 \mathcal{R}_{cau} - the CH of all $(R_1, R_2, \Gamma_1, \Gamma_2)$ satisfying

Outline

Problem Formulation

Strictly Causal SI

Causal SI

MAC with causal SI - main

result

The naïve approach

Example

$$\begin{split} R_1 &\leq I(U_1; Y | U_2, U, V) \\ R_2 &\leq I(U_2; Y | U_1, U, V) \\ R_1 + R_2 &\leq I(U_1, U_2; Y | U, V) \\ R_1 + R_2 &\leq I(U_1, U, U_2, V; Y) - I(V; S) \\ \Gamma_k &\geq \mathsf{E}[\phi_k(X_k)], \qquad k = 1, 2 \end{split}$$

for some joint distribution

Independent SI streams

Summary

END

$$P_{U,U_1,U_2,V,X_1,X_2,S,Y} = P_U P_{U_1|U} P_{U_2|U} P_{V|S} P_S \cdot P_{X_1|U,U_1,S} P_{X_2|U,U_2,S} P_{Y|S,X_1,X_2}.$$

 $U_1 - U - U_2$ V - S - Y

 \mathcal{R}_{cau} - the CH of all $(R_1, R_2, \Gamma_1, \Gamma_2)$ satisfying

Outline

Problem Formulation

Strictly Causal SI

Causal SI

MAC with causal SI - main

result

The naïve approach

Example

$$\begin{split} R_1 &\leq I(U_1; Y | U_2, U, V) \\ R_2 &\leq I(U_2; Y | U_1, U, V) \\ R_1 + R_2 &\leq I(U_1, U_2; Y | U, V) \\ R_1 + R_2 &\leq I(U_1, U, U_2, V; Y) - I(V; S) \\ \Gamma_k &\geq \mathsf{E}[\phi_k(X_k)], \qquad k = 1, 2 \end{split}$$

for some joint distribution

Independent SI streams

Summary

END

$$P_{U,U_1,U_2,V,X_1,X_2,S,Y} = P_U P_{U_1|U} P_{U_2|U} P_{V|S} P_S \cdot P_{X_1|U,U_1,S} P_{X_2|U,U_2,S} P_{Y|S,X_1,X_2}.$$

 $U_1 - U - U_2$ V - S - Y $(U_1, U, U_2) \perp (V, S)$

 \mathcal{R}_{cau} - the CH of all $(R_1, R_2, \Gamma_1, \Gamma_2)$ satisfying

Outline

Problem Formulation

Strictly Causal SI

Causal SI

MAC with causal SI - main

result

The naïve approach

Example

$\begin{aligned} R_1 &\leq I(U_1; Y | U_2, U, V) \\ R_2 &\leq I(U_2; Y | U_1, U, V) \\ R_1 + R_2 &\leq I(U_1, U_2; Y | U, V) \\ R_1 + R_2 &\leq I(U_1, U, U_2, V; Y) - I(V; S) \\ \Gamma_k &\geq \mathsf{E}[\phi_k(X_k)], \qquad k = 1, 2 \end{aligned}$

for some joint distribution

Independent SI streams

Summary

END

$$\begin{split} P_{U,U_1,U_2,V,X_1,X_2,S,Y} &= P_U P_{U_1|U} P_{U_2|U} P_{V|S} P_S \cdot \\ & P_{X_1|U,U_1,S} P_{X_2|U,U_2,S} P_{Y|S,X_1,X_2} . \end{split}$$

Theorem 2 (Causal SI) $\mathcal{R}_{cau} \subseteq \mathcal{C}_{cau}$

the state. It leads to the region of all (R_1, R_2) satisfying Outline $R_1 < I(T_1; Y | T_2, Q)$ **Problem Formulation** $R_2 \leq I(T_2; Y | T_1, Q)$ Strictly Causal SI $R_1 + R_2 \leq I(T_1, T_2; Y|Q)$ Causal SI MAC with causal SI - main for some joint distribution $P_Q P_{T_1|Q} P_{T_2|Q} P_{Y|T_1,T_2}$. result The naïve approach Example Independent SI streams

Summary

END

The naïve approach – using Shannon strategies, without block Markov coding of

The naïve approach – using Shannon strategies, without block Markov coding of the state. It leads to the region of all (R_1, R_2) satisfying

$R_1 \le I(T_1; Y T_2, Q)$
$R_2 \le I(T_2; Y T_1, Q)$
$R_1 + R_2 \le I(T_1, T_2; Y Q)$

for some joint distribution $P_Q P_{T_1|Q} P_{T_2|Q} P_{Y|T_1,T_2}$. Here

 T_k , k = 1, 2 are random Shannon strategies:

 $T_k \in \mathcal{T}_k$, the set of mappings $t_k : S \to \mathcal{X}_k$

Outline

Problem Formulation

Strictly Causal SI

Causal SI

MAC with causal SI - main

result The naïve approach

Example

Independent SI streams

Summary

The naïve approach – using Shannon strategies, without block Markov coding of the state. It leads to the region of all (R_1, R_2) satisfying

$R_1 \le I(T_1; Y T_2, Q)$
$R_2 \le I(T_2; Y T_1, Q)$
$R_1 + R_2 \le I(T_1, T_2; Y Q)$

for some joint distribution $P_Q P_{T_1|Q} P_{T_2|Q} P_{Y|T_1,T_2}$. Here

 T_k , k = 1, 2 are random Shannon strategies:

 $T_k \in \mathcal{T}_k$, the set of mappings $t_k : S \to \mathcal{X}_k$

Q is a time sharing random variable,

Outline

Problem Formulation

Strictly Causal SI

Causal SI

MAC with causal SI - main result

The naïve approach

Example

Independent SI streams

Summary

The naïve approach – using Shannon strategies, without block Markov coding of the state. It leads to the region of all (R_1, R_2) satisfying

$R_1 \le I(T_1; Y T_2, Q)$	
$R_2 \le I(T_2; Y T_1, Q)$	
$R_1 + R_2 \le I(T_1, T_2; Y Q)$	

for some joint distribution $P_Q P_{T_1|Q} P_{T_2|Q} P_{Y|T_1,T_2}$. Here

 T_k , k = 1, 2 are random Shannon strategies:

 $T_k \in \mathcal{T}_k$, the set of mappings $t_k : S \to \mathcal{X}_k$

Q is a time sharing random variable, and

$$P_{Y|T_1,T_2}(y|t_1,t_2) = \sum_{s \in \mathcal{S}} P_S(s) P_{Y|S,X_1,X_2}(y|s,t_1(s),t_2(s)).$$

Outline

Problem Formulation

Strictly Causal SI

Causal SI

MAC with causal SI - main result

The naïve approach

Example

Independent SI streams

Summary

The naïve approach – using Shannon strategies, without block Markov coding of the state. It leads to the region of all (R_1, R_2) satisfying Outline $R_1 \leq I(T_1; Y | T_2, Q)$ **Problem Formulation** $R_2 \leq I(T_2; Y | T_1, Q)$ Strictly Causal SI $R_1 + R_2 \leq I(T_1, T_2; Y|Q)$ Causal SI MAC with causal SI - main for some joint distribution $P_Q P_{T_1|Q} P_{T_2|Q} P_{Y|T_1,T_2}$. result The naïve approach Example We denote this region as $\mathcal{R}^{naïve}$. Independent SI streams Summary END

- \mathcal{R}_{cau} contains the region of the naïve approach, since we can always choose degenerate *V*.

Problem Formulation

Strictly Causal SI

Causal SI

Outline

MAC with causal SI - main result

The naïve approach

Example

Independent SI streams

Summary

END

- In some cases, the inclusion is strict.

The noiseless binary MAC with input selector:

Outline

Problem Formulation

Strictly Causal SI

Causal SI

 MAC with causal SI - main result
 The naïve approach

Example

Independent SI streams

Summary

END

 $\mathcal{X}_1 = \mathcal{X}_2 = \mathcal{Y} = \{0, 1\}, \quad \mathcal{S} = \{1, 2\}, \quad P_S(S = 2) = p > 0.5$

The noiseless binary MAC with input selector:

Outline

Problem Formulation

Strictly Causal SI

 $Y = X_S$

 $\mathcal{X}_1 = \mathcal{X}_2 = \mathcal{Y} = \{0, 1\}, \quad \mathcal{S} = \{1, 2\}, \quad P_S(S = 2) = p > 0.5$

Causal SI

 MAC with causal SI - main result
 The naïve approach

Example

Independent SI streams

Summary

END

The noiseless binary MAC with input selector:

Outline

Problem Formulation

Strictly Causal SI

Causal SI

 MAC with causal SI - main result
 The naïve approach

Example

Independent SI streams

Summary

END

 $Y = X_S$

The noiseless binary MAC with input selector:

Outline

Problem Formulation

Strictly Causal SI

Causal SI

 MAC with causal SI - main result
 The naïve approach

Example

Independent SI streams

Summary

END

 $Y = X_S$

- If the decoder knows S, user 1 can transmit at rate 1 - p.

- Hence, 1 - p is an upper bound on the transmission rate of user 1 in our model.

Problem Formulation

Strictly Causal SI

Causal SI

 MAC with causal SI - main result
 The naïve approach

Example

Independent SI streams

Summary

END

Outline

Problem Formulation

Strictly Causal SI

Causal SI

 MAC with causal SI - main result
 The naïve approach

Example

Independent SI streams

Summary

END

With a proper choice of random variables in \mathcal{R}_{cau}

$$(R_1, R_2) = \left(\min\{1 - p, 1 - H_b(p)\}, 0\right) \in \mathcal{R}_{cau}$$

(Observe – achieves the maximal rate of user 1 for $p \ge H_b(p)$.)

Problem Formulation

Strictly Causal SI

Causal SI

 MAC with causal SI - main result
 The naïve approach

Example

With a proper choice of random variables in \mathcal{R}_{cau}

$$(R_1, R_2) = \left(\min\{1 - p, 1 - H_b(p)\}, 0\right) \in \mathcal{R}_{\mathsf{cau}}$$

Independent SI streams

Summary

END

(Observe – achieves the maximal rate of user 1 for
$$p \ge H_b(p)$$
.)

The maximal rate of user 1 in the naïve approach is

$$R_{2,\max}^{\text{naïve}} = \log_2\left(1 + (1-p)p^{rac{p}{1-p}}
ight)$$
 bits

Problem Formulation

Strictly Causal SI

Causal SI

MAC with causal SI - main result
The naïve approach

Example

With a proper choice of random variables in \mathcal{R}_{cau}

The maximal rate of user 1 in the naïve approach is

(Observe – achieves the maximal rate of user 1 for $p \ge H_b(p)$.)

$$(R_1, R_2) = \left(\min\{1 - p, 1 - H_b(p)\}, 0\right) \in \mathcal{R}_{cau}$$

Independent SI streams

Summary

END

$$R_{2,\max}^{\text{naïve}} = \log_2\left(1 + (1-p)p^{\frac{p}{1-p}}\right) \quad \text{bits}$$

For sufficiently large value of p,

 $R_{2,\max}^{\text{naïve}} < \min \left\{1-p, 1-H_b(p)\right\}$

- Cooperation in the compression and transmission of the state is not possible.

- Yet, compression and transmission of the states to the decoder is beneficial, and enlarges the capacity region of the MAC.

- Yet, compression and transmission of the states to the decoder is beneficial, and enlarges the capacity region of the MAC.
- Utilize distributed Wyner-Ziv compression and block Markov coding (ISIT 2010).

Summary

Derived achievable region for the MAC with common strictly causal SI, based on block Markov encoding of the state.

- Strictly causal SI enlarges the capacity region of the MAC.
- Extended the results to causal SI
- The new region for causal Si is strictly better that the region obtained by the naïve approach.
- Strictly causal SI is beneficial even when the states available at the encoders are independent (ISIT 2010).

Outline

Problem Formulation

Strictly Causal SI

Causal SI

Independent SI streams

Summary

END

Thank You!