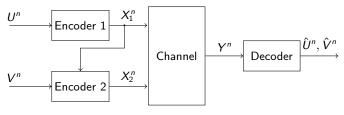
The Multiple Access Channel with Correlated Sources and Cribbing Encoders

Eliron Amir and Yossef Steinberg

IZS 2012

Problem formulation



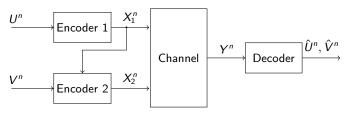
Encoders:

$$\begin{aligned} X_{1,i} &= f_{1,i}(U^n) \\ X_{2,i} &= f_{2,i}(V^n, X_1^{i-1}) \quad \text{(strictly causal cribbing),} \end{aligned}$$

- Memoryless channel $P_{Y|X_1,X_2}$ and source $(U,V) \sim P_{U,V}$
- Lossless transmission of U^n and V^n .

Transmissibility conditions - ?

Problem formulation



Encoders:

$$egin{aligned} X_{1,i} &= f_{1,i}(U^n) \ X_{2,i} &= f_{2,i}(V^n,X_1^i) \quad \mbox{(causal cribbing)} \end{aligned}$$

- Memoryless channel $P_{Y|X_1,X_2}$ and source $(U,V) \sim P_{U,V}$
- Lossless transmission of U^n and V^n .

Transmissibility conditions - ?

▶ Willems & van der Meulen, 85: MAC with cribbing encoders

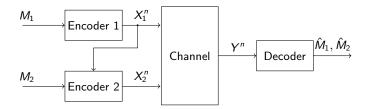
- ▶ Willems & van der Meulen, 85: MAC with cribbing encoders
- Slepian & Wolf, July 73: Noiseless coding of correlated sources

- ▶ Willems & van der Meulen, 85: MAC with cribbing encoders
- Slepian & Wolf, July 73: Noiseless coding of correlated sources
- Slepian & Wolf, Sept. 73: Multiple access channel with correlated sources:
 - Two users MAC, three independent sources (U_0, U_1, U_2) , U_0 known to both users.

- ▶ Willems & van der Meulen, 85: MAC with cribbing encoders
- Slepian & Wolf, July 73: Noiseless coding of correlated sources
- Slepian & Wolf, Sept. 73: Multiple access channel with correlated sources:
 - Two users MAC, three independent sources (U_0, U_1, U_2) , U_0 known to both users.
- Cover, El Gamal, & Salehi, 80: Multiple access channels with arbitrarily correlated sources

MAC with cribbing encoders, W&M, 85:

W&M studied all possible cribbing combinations:



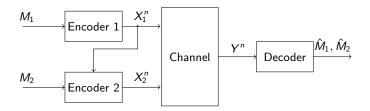
One sided, strictly causal cribbing

$$X_{1,i} = f_{1,i}(M_1)$$

$$X_{2,i} = f_{2,i}(M_2, X_1^{i-1})$$

MAC with cribbing encoders, W&M, 85:

W&M studied all possible cribbing combinations:



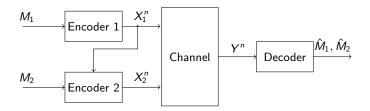
One sided, causal cribbing

$$X_{1,i} = f_{1,i}(M_1)$$

$$X_{2,i} = f_{2,i}(M_2, X_1^i)$$

MAC with cribbing encoders, W&M, 85:

W&M studied all possible cribbing combinations:



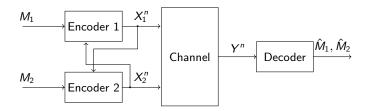
One sided, non-causal cribbing

$$X_{1,i} = f_{1,i}(M_1)$$

$$X_{2,i} = f_{2,i}(M_2, X_1^n)$$

MAC with cribbing encoders, W&M, 85:

W&M studied all possible cribbing combinations:



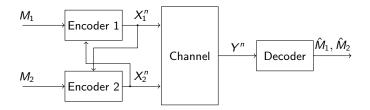
Two sided, stricly causal

$$X_{1,i} = f_{1,i}(M_1, X_2^{i-1})$$

$$X_{2,i} = f_{2,i}(M_2, X_1^{i-1})$$

MAC with cribbing encoders, W&M, 85:

W&M studied all possible cribbing combinations:



Two sided, causal

$$X_{1,i} = f_{1,i}(M_1, X_2^{i-1})$$

$$X_{2,i} = f_{2,i}(M_2, X_1^i)$$

MAC with cribbing encoder, W&M 85

Main theme: cribbing allows dependence between the MAC inputs:

MAC with cribbing encoder, W&M 85

Main theme: cribbing allows dependence between the MAC inputs:

The capacity region for one sided strictly causal cribbing

 $egin{aligned} R_1 &\leq H(X_1|W) \ R_2 &\leq I(X_2;Y|X_1,W) \ R_1 + R_2 &\leq I(X_1,X_2;Y) \end{aligned}$

for some $P_W P_{X_1|W} P_{X_2|W}$.

MAC with cribbing encoder, W&M 85

Main theme: cribbing allows dependence between the MAC inputs:

The capacity region for one sided strictly causal cribbing

 $egin{aligned} &R_1 \leq H(X_1|W) \ &R_2 \leq I(X_2;Y|X_1,W) \ &R_1+R_2 \leq I(X_1,X_2;Y) \end{aligned}$

for some $P_W P_{X_1|W} P_{X_2|W}$.

The capacity region for one sided causal/non-causal cribbing

$$egin{aligned} &R_1 \leq H(X_1) \ &R_2 \leq I(X_2; \, Y|X_1) \ &R_1 + R_2 \leq I(X_1, X_2; \, Y) \end{aligned}$$

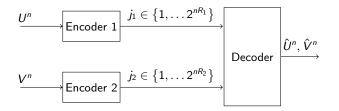
for some P_{X_1,X_2} .

MAC without cribbing

$$egin{aligned} R_1 &\leq I(X_1; Y | X_2, Q) \ R_2 &\leq I(X_2; Y | X_1, Q) \ R_1 + R_2 &\leq I(X_1, X_2; Y | Q) \end{aligned}$$

for some $P_Q P_{X_1|Q} P_{X_2|Q}$.

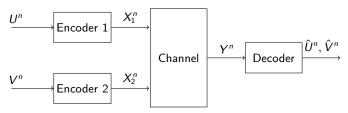
Noisless coding of correlated sources, S&W 73



A rate pair (R_1, R_2) is achievable if and only if

 $egin{aligned} R_1 &\geq H(U|V) \ R_2 &\geq H(V|U) \ R_1 + R_2 &\geq H(U,V) \end{aligned}$

Joint source-channel coding for MAC, Cover, El Gamal, & Salehi 80



The source (U, V) can be sent via the MAC with $P_e \rightarrow 0$ if

$$egin{aligned} & H(U|V) \leq I(X_1; Y|X_2, V, W) \ & H(V|U) \leq I(X_2; Y|X_1, U, W) \ & H(U, V|S) \leq I(X_1, X_2; Y|W, S) \ & H(U, V) \leq I(X_1, X_2; Y) \end{aligned}$$

where S is the common part g(U) = f(V) = S, and

$$P_{W,U,V,X_1,X_2} = P_W P_{U,V} P_{X_1|U,W} P_{X_2|V,W}.$$

Joint source-channel coding for MAC, Cover, El Gamal, & Salehi 80

Without common part:

The source (U, V) can be sent via the MAC with $P_e \rightarrow 0$ if

$$H(U|V) \le I(X_1; Y|X_2, V)$$

 $H(V|U) \le I(X_2; Y|X_1, U)$
 $H(U, V) \le I(X_1, X_2; Y)$

where

$$P_{U,V,X_1,X_2} = P_{U,V}P_{X_1|U}P_{X_2|V}.$$

Separation does not hold (r.h.s depends on the source)

Joint source-channel coding for MAC, Cover, El Gamal, & Salehi 80

- An intuitive explanation: in channel capacity problems, the messages at the inputs, M₁, M₂ are independent, resulting in P_{X1,X2} = P_{X1}P_{X2}. This does not fit well the source model U and V are dependent. (??)
- Cribbing allows dependence between inputs. Does separation yield optimal performance in cribbing models?

Definitions

Strictly causal cribbing

- An (n,m,ϵ) code consists of m+1 encoding functions

$$f_1: \mathcal{U}^n \to \mathcal{X}_1^m,$$

 $f_{2,i}: \mathcal{V}^n \times \mathcal{X}_1^{i-1} \to \mathcal{X}_{2,i}, \quad i = 1, 2, \dots, m$

and a decoding function

$$\phi:\mathcal{Y}^m\to\mathcal{U}^n\times\mathcal{V}^n$$

such that $P((U^n, V^n) \neq \phi(Y^m)) \leq \epsilon$.

- The rate of the code is ho=n/m

Definitions

Strictly causal cribbing

(U, V) is transmissible via $P_{Y|X_1,X_2}$ at rate ρ if for every $\epsilon > 0$, $\delta > 0$, and s.l. n, there exists an $(n, n/(\rho - \delta), \epsilon)$ code for $((U, V), P_{Y|X_1,X_2})$

Definitions

Causal cribbing

- An (n,m,ϵ) code consists of m+1 encoding functions

$$f_1: \mathcal{U}^n \to \mathcal{X}_1^m,$$

 $f_{2,i}: \mathcal{V}^n \times \mathcal{X}_1^i \to \mathcal{X}_{2,i}, \quad i = 1, 2, \dots, m$

and a decoding function

$$\phi:\mathcal{Y}^m\to\mathcal{U}^n\times\mathcal{V}^n$$

such that $P((U^n, V^n) \neq \phi(Y^m)) \leq \epsilon$.

- The rate of the code is ho=n/m

Causal cribbing

Theorem

A source (U, V) is transmissible via the MAC $P_{Y|X_1,X_2}$ with causal cribbing, at rate ρ , if and only if

$$egin{aligned} &
ho H(U|V) \leq H(X_1) \ &
ho H(V|U) \leq I(X_2;Y|X_1) \ &
ho H(U,V) \leq I(X_1,X_2;Y) \end{aligned}$$

for some P_{X_1,X_2} .

Causal cribbing

Theorem

A source (U, V) is transmissible via the MAC $P_{Y|X_1,X_2}$ with causal cribbing, at rate ρ , if and only if

$$egin{aligned} &
ho H(U|V) \leq H(X_1) \ &
ho H(V|U) \leq I(X_2;Y|X_1) \ &
ho H(U,V) \leq I(X_1,X_2;Y) \end{aligned}$$

for some P_{X_1,X_2} .

 \implies Separation?

Causal cribbing - discussion

Assume the conditions are satisfied. Then

$$\begin{array}{ll} \rho H(U|V) \leq & H(X_1) \\ \rho H(V|U) \leq & I(X_2;Y|X_1) \\ \rho H(U,V) \leq & I(X_1,X_2;Y) \end{array}$$

Causal cribbing - discussion

Assume the conditions are satisfied. Then

 $\rho H(U|V) \le R_1 \le H(X_1)$ $\rho H(V|U) \le R_2 \le I(X_2; Y|X_1)$ $\rho H(U, V) \le R_3 \le I(X_1, X_2; Y)$

Causal cribbing - discussion

Assume the conditions are satisfied. Then

 $\rho H(U|V) \le R_1 \le H(X_1)$ $\rho H(V|U) \le R_2 \le I(X_2; Y|X_1)$ $\rho H(U, V) \le R_3 \le I(X_1, X_2; Y)$

But for separation to hold we need

$$\rho H(U, V) \leq R_1 + R_2 \leq I(X_1, X_2; Y)$$

Causal cribbing - discussion

- $\mathcal{I}_1 = [a, b]$, $\mathcal{I}_2 = [c, d]$, $\mathcal{I}_3 = [e, f]$ nonempty intervals.
- Necessary and sufficient conditions for the existence of (R_1, R_2) s.t.

$$R_1 \in \mathcal{I}_1, \quad R_2 \in \mathcal{I}_2, \quad R_1 + R_2 \in \mathcal{I}_3$$

is that the endpoints satisfy

$$a+c \leq f$$
, $b+d \geq e$

Causal cribbing - discussion

- $\mathcal{I}_1 = [a, b]$, $\mathcal{I}_2 = [c, d]$, $\mathcal{I}_3 = [e, f]$ nonempty intervals.
- Necessary and sufficient conditions for the existence of (R_1, R_2) s.t.

$$R_1 \in \mathcal{I}_1, \quad R_2 \in \mathcal{I}_2, \quad R_1 + R_2 \in \mathcal{I}_3$$

is that the endpoints satisfy

$$a+c\leq f,\quad b+d\geq e$$

Identify the intervals

$$\begin{split} \mathcal{I}_{1} &= \left[\rho H \left(U | V \right), H \left(X_{1} \right) \right] \\ \mathcal{I}_{2} &= \left[\rho H \left(V | U \right), I \left(X_{2}; Y | X_{1} \right) \right] \\ \mathcal{I}_{3} &= \left[\rho H \left(U, V \right), I \left(X_{1}, X_{2}; Y \right) \right] \end{split}$$

By basic properties of information functions we have

$$egin{aligned}
ho H(U|V) +
ho H(V|U) &\leq
ho H(U,V) \ &\leq I(X_1,X_2;Y) \ &= I(X_1;Y) + I(X_2;Y|X_1) \ &\leq H(X_1) + I(X_2;Y|X_1) \end{aligned}$$

Implying that we can find

$$\rho H(U, V) \leq R_1 + R_2 \leq I(X_1, X_2; Y)$$

Causal cribbing - discussion

Theorem A source (U, V) is transmissible via the MAC $P_{Y|X_1,X_2}$ with causal cribbing, at rate ρ , if and only if

$$egin{aligned} &
ho H(U|V) \leq H(X_1) \ &
ho H(V|U) \leq I(X_2;Y|X_1) \ &
ho H(U,V) \leq I(X_1,X_2;Y) \end{aligned}$$

for some P_{X_1,X_2} .

Causal cribbing - discussion

Theorem A source (U, V) is transmissible via the MAC $P_{Y|X_1,X_2}$ with causal cribbing, at rate ρ , if and only if

$$ho H(U|V) \leq H(X_1)$$

ho H(V|U) $\leq I(X_2; Y|X_1)$
ho H(U, V) $\leq I(X_1, X_2; Y)$

for some P_{X_1,X_2} .

The source pair is transmissible via the MAC at rate ρ, with causal cribbing, if and only if its (scaled) SW region intersects the MAC capacity region with causal cribbing.

A separation principle applies

Strictly causal cribbing

Theorem

A source (U, V) is transmissible via the MAC $P_{Y|X_1,X_2}$ with strictly causal cribbing, at rate $\rho = 1$, if

$$egin{aligned} & H(U|V) \leq H(X_1|V,W) \ & H(V|U) \leq I(X_2;Y|X_1,U,W) \ & H(U,V) \leq I(X_1,X_2,Y|U) \end{aligned}$$

for some

 $P_W P_{U,V} P_{X_1|U,W} P_{X_2|V,W}$

where $P_W = P_U$.

Strictly causal cribbing

Theorem

A source (U, V) is transmissible via the MAC $P_{Y|X_1,X_2}$ with strictly causal cribbing, at rate $\rho = 1$, if

$$egin{aligned} & H(U|V) \leq H(X_1|V,W) \ & H(V|U) \leq I(X_2;Y|X_1,U,W) \ & H(U,V) \leq I(X_1,X_2,Y|U) \end{aligned}$$

for some

 $P_W P_{U,V} P_{X_1|U,W} P_{X_2|V,W}$

where $P_W = P_U$.

Separation does not hold

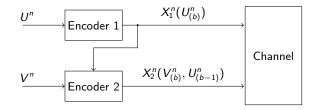
Strictly causal cribbing

- Direct part: block-Markov coding.
 - Aligned
 - Non aligned

Strictly causal cribbing

- Direct part: block-Markov coding.
 - Aligned
 - Non aligned

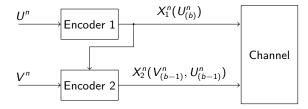
Aligned:



Strictly causal cribbing

- Direct part: block-Markov coding.
 - Aligned
 - Non aligned

Non aligned:



Future work:

- Other cribbing models (two sided, non causal)
- Transmission with distortion

ISIT 2012