The Degraded Broadcast Channel with Non-Causal Action-Dependent Side Information

Yossef Steinberg

ISIT 2013

Problem formulation

Problem

 formulationThe "regular" state-dependent BC:

- Channel encoder:

$$
\begin{array}{ll}
X_{i}=f\left(m_{1}, m_{2}, S^{n}\right) & \text { (non-causal SI) } \\
X_{i}=f\left(m_{1}, m_{2}, S^{i}\right) & (\text { causal SI) }
\end{array}
$$

- $\frac{1}{n} \sum_{i=1}^{n} \Lambda\left(X_{i}\right) \leq \lambda$

$$
P\left(\left(\hat{m}_{1}, \hat{m}_{2}\right) \neq\left(m_{1}, m_{2}\right)\right) \leq \epsilon
$$

Problem formulation

Action-dependent states:

Encoding is performed in two parts:

- Given the pair of messages, an action sequence A^{n} is created.
The actions generate a sequence of states S^{n}, via $P_{S \mid A}$. S^{n} is available at the encoder (causally or noncausally).
- The encoder produces the channel input as a function of the messages and the states S^{n}.

Problem formulation

Action-dependent states:

- Two possible models

$$
\begin{array}{ll}
X_{i}=f\left(m_{1}, m_{2}, S^{n}\right) & \text { (non-causal SI) } \\
X_{i}=f\left(m_{1}, m_{2}, S^{i}\right) & \text { (causal SI) }
\end{array}
$$

Problem formulation

Action-dependent states:

- Two possible models

$$
\begin{array}{ll}
X_{i}=f\left(m_{1}, m_{2}, S^{n}\right) & \text { (non-causal SI) } \\
X_{i}=f\left(m_{1}, m_{2}, S^{i}\right) & \text { (causal SI) }
\end{array}
$$

- Causal case solved [S \& Weissman 2012], [Ahmedi \& Simeone 2012].

Motivation

- Controlling the channel: sometimes, the user can affect the channel statistics (state), albeit at a certain cost.

Motivation

- Controlling the channel: sometimes, the user can affect the channel statistics (state), albeit at a certain cost.
- More specific channels: Channels (memories) with a rewrite option [Weissman 2010].

Motivation

- Controlling the channel: sometimes, the user can affect the channel statistics (state), albeit at a certain cost.
- More specific channels: Channels (memories) with a rewrite option [Weissman 2010].
- Harvesting capacity with energy storage: Actions model the use of energy stored in the battery. Influence the channel state (=total energy in battery).

Motivation

- Controlling the channel: sometimes, the user can affect the channel statistics (state), albeit at a certain cost.
- More specific channels: Channels (memories) with a rewrite option [Weissman 2010].
- Harvesting capacity with energy storage: Actions model the use of energy stored in the battery. Influence the channel state (=total energy in battery).
- Cost of retrieving side information.

Motivation

- Controlling the channel: sometimes, the user can affect the channel statistics (state), albeit at a certain cost.
- More specific channels: Channels (memories) with a rewrite option [Weissman 2010].
- Harvesting capacity with energy storage: Actions model the use of energy stored in the battery. Influence the channel state (=total energy in battery).
- Cost of retrieving side information.

Motivation

- Controlling the channel: sometimes, the user can affect the channel statistics (state), albeit at a certain cost.
- More specific channels: Channels (memories) with a rewrite option [Weissman 2010].
- Harvesting capacity with energy storage: Actions model the use of energy stored in the battery. Influence the channel state (=total energy in battery).
- Cost of retrieving side information.

Motivation

Cost of retrieving SI:

In "regular" channel coding with SI , state is produced by nature (not by actions). It is either available at the encoder, or absent. No intermediate situation, and no cost on retrieving it.

Motivation

Cost of retrieving SI:

Motivation

Cost of retrieving SI:

- S is produced by nature

Motivation

Cost of retrieving SI:

- S is produced by nature
- Side information is not available for free - we have to "go out and get it," or install expensive (and noisy) sensors to get it.

Motivation

Cost of retrieving SI:

- S is produced by nature
- Side information is not available for free - we have to "go out and get it," or install expensive (and noisy) sensors to get it.
- The actions determine the availability (and quality) of side information at the encoder $-S_{e}$.

Motivation

Cost of retrieving SI:

Probing capacity. Introduced in the context of single user channels by Asnani, Permuter, \& Weissman, 2010.

Problem formulation

The basic setup:

- Memoryless channel
- Non causal SI: $X_{i}=f\left(m_{1}, m_{2}, S^{n}\right)$
- Cost on input and actions:

$$
\frac{1}{n} \sum_{i=1}^{n} \wedge\left(A_{i}, X_{i}\right) \leq \lambda
$$

Previous results

Action dependent channels and sources

- Weissman 2010 - Introduced action dependent channels.
- Capacity of single user channels, causal and non-causal models.
- Bounds on the capacity of rewrite channels.
- Connection to certain MAC models.
- H. Asnani, H. Permuter, \& T. Weissman 2010 (arXiv) Probing capacity: to observe or not to observe the side information? $\left(P_{S_{e} \mid S, A}\right)$.
- Permuter \& Weissman 2011 - Actions in the context of source coding: the side information vending machine
- Y.-K. Chia, H. Asnani, \& T. Weissman 2011 (arXiv) Multiterminal source coding with action dependent side information

Previous results

Action dependent single user channels

- Causal case (Weissman 2010):

$$
\begin{aligned}
& C_{\mathrm{c}}= \max I(U, A ; Y) \\
& \mathrm{E}[\Lambda(A, X)] \leq \lambda \\
& P_{U, A} P_{S \mid A} P_{X \mid S, U, A} P_{Y \mid S, X}
\end{aligned}
$$

Previous results

Action dependent single user channels

- Causal case (Weissman 2010):

$$
\begin{aligned}
C_{\mathrm{c}}= & \max I(U, A ; Y)=I(A ; Y)+I(U ; Y \mid A) \\
& \mathrm{E}[\Lambda(A, X)] \leq \lambda
\end{aligned}
$$

$$
P_{U, A} P_{S \mid A} P_{X \mid S, U, A} P_{Y \mid S, X}
$$

Previous results

Action dependent single user channels

- Causal case (Weissman 2010):

$$
\begin{gathered}
C_{\mathrm{c}}=\max I(U, A ; Y)=I(A ; Y)+I(U ; Y \mid A) \\
\mathrm{E}[\Lambda(A, X)] \leq \lambda \\
P_{U, A} P_{S \mid A} P_{X \mid S, U, A} P_{Y \mid S, X}
\end{gathered}
$$

- Non causal case (Weisman 2010)

$$
\begin{aligned}
C_{\mathrm{nc}}= & \max I(U, A ; Y)-I(U ; S \mid A) \\
& \mathrm{E}[\Lambda(A, X)] \leq \lambda \\
& \quad P_{A} P_{S \mid A} P_{U \mid S, A} P_{X \mid S, U, A} P_{Y \mid S, X}
\end{aligned}
$$

Previous results

Action dependent single user channels

- Causal case (Weissman 2010):

$$
\begin{aligned}
C_{\mathrm{c}}= & \max I(U, A ; Y) \quad=I(A ; Y)+I(U ; Y \mid A) \\
& \mathrm{E}[\Lambda(A, X)] \leq \lambda
\end{aligned}
$$

$$
P_{U, A} P_{S \mid A} P_{X \mid S, U, A} P_{Y \mid S, X}
$$

- Non causal case (Weisman 2010)

$$
\begin{gathered}
C_{\mathrm{nc}}=\max I(U, A ; Y)-I(U ; S \mid A)=I(A ; Y)+I(U ; Y \mid A \\
\mathrm{E}[\Lambda(A, X)] \leq \lambda \\
\quad P_{A} P_{S \mid A} P_{U \mid S, A} P_{X \mid S, U, A} P_{Y \mid S, X}
\end{gathered}
$$

Previous results

Action dependent single user channels

- Causal case (Weissman 2010):

$$
\begin{gathered}
C_{\mathrm{c}}=\max I(U, A ; Y)=I(A ; Y)+I(U ; Y \mid A) \\
\mathrm{E}[\Lambda(A, X)] \leq \lambda \\
P_{U, A} P_{S \mid A} P_{X \mid S, U, A} P_{Y \mid S, X}
\end{gathered}
$$

- Non causal case (Weisman 2010)

$$
\begin{aligned}
C_{\mathrm{nc}}= & \max I(U, A ; Y)-I(U ; S \mid A)=I(A ; Y)+I(U ; Y \mid A \\
& \mathrm{E}[\Lambda(A, X)] \leq \lambda \\
& P_{A} P_{S \mid A} P_{U \mid S, A} P_{X \mid S, U, A} P_{Y \mid S, X}
\end{aligned}
$$

In both cases, X can be taken to be a deterministic function of (U, S), and A a deterministic function of U.

Previous results

State dependent broadcast channels

- S 2002, 2005 - Degraded, state dependent BC:
- Capacity region for causal SI
- Inner and outer bounds for non-causal SI
- Capacity region for non-causal SI, where the stronger user is informed

Previous results

State dependent broadcast channels

- S 2002, 2005 - Degraded, state dependent BC:
- Capacity region for causal SI
- Inner and outer bounds for non-causal SI
- Capacity region for non-causal SI, where the stronger user is informed
- S \& Shamai ISIT 2005:
- Inner bounds for the general state dependent BC (Marton region + GP).

Previous results

State dependent BC

A state dependent $\mathrm{BC} P_{Y_{1}, Y_{2} \mid S, X}$ is called physically degraded if

$$
P_{Y_{1}, Y_{2} \mid S, X}=P_{Y_{1} \mid S, X} \cdot P_{Y_{2} \mid Y_{1}}
$$

and stochastically degraded if

$$
P_{Y_{2} \mid S, X}\left(y_{2} \mid s, x\right)=\sum_{y_{1}} P_{Y_{1}, Y_{2} \mid S, x}\left(y_{1}, y_{2} \mid s, x\right) \cdot W_{Y_{2} \mid Y_{1}}\left(y_{2} \mid y_{2}\right)
$$

for some $W_{Y_{2} \mid Y_{1}}$.

Previous results

$B C+$ Actions, the causal case
\mathcal{R}_{c} - the collection of all $\left(\lambda, R_{1}, R_{2}\right)$ such that

$$
\begin{aligned}
R_{1} & \leq I\left(U, A ; Y_{1} \mid K\right) \\
R_{2} & \leq I\left(K ; Y_{2}\right) \\
\mathrm{E}\left[\Lambda_{k}(A, X)\right] & \leq \lambda_{k}, \quad k=1,2, \ldots, d
\end{aligned}
$$

for some

$$
P_{A, K, U, S, X, Y, Z}=P_{K, U} P_{A \mid K, U} P_{X \mid A, K, U, S} P_{S \mid A} P_{Y_{1}, Y_{2} \mid S, X} .
$$

Theorem
For the degraded BC with action dependent states and causal SI

$$
\mathcal{C}_{\mathrm{c}}=\mathcal{R}_{\mathrm{c}} .
$$

[S. \& Weissman, 2012], [Ahmedi \& Simeone, 2012].

Previous results

$B C+$ Actions, the causal case

$$
\begin{aligned}
& R_{1} \leq I\left(U, A_{;} ; Y_{1} \mid K\right)=I\left(A ; Y_{1} \mid K\right)+I\left(U ; Y_{1} \mid K, A\right) \\
& R_{2} \leq I\left(K ; Y_{2}\right) \\
& \mathrm{E}\left[\Lambda_{k}(A, X)\right] \leq \lambda_{k}, \quad k=1,2, \ldots, d \\
& P_{A, K, U, S, X, Y, Z}=P_{K, U} P_{A \mid K, U} P_{X \mid A, K, U, S} P_{S \mid A} P_{Y_{1}, Y_{2} \mid S, X} .
\end{aligned}
$$

Main results

- Memoryless channel
- Non causal SI: $X_{i}=f\left(m_{1}, m_{2}, S^{n}\right)$
- Cost on input and actions:

$$
\frac{1}{n} \sum_{i=1}^{n} \Lambda\left(A_{i}, X_{i}\right) \leq \lambda \quad\left(\Lambda, \lambda \in R^{d}\right)
$$

Main results

- Capacity region: $\mathcal{C}_{\mathrm{nc}}$
- $\mathcal{C}_{\mathrm{nc}}$ depends on $P_{Y_{1}, Y_{2} \mid S, X}$ only via $P_{Y_{1} \mid S, X}$ and $P_{Y_{2} \mid S, X}$.
\Rightarrow No distinction has to be made between physically and stochastically degraded channels. General term: degraded.

Main results

Inner bound
\mathcal{R}_{i} - the collection of all $\left(\lambda, R_{1}, R_{2}\right)$ such that

$$
\begin{aligned}
R_{2} \leq & I\left(K, A_{2} ; Y_{2}\right)-I\left(K ; A, S \mid A_{2}\right) \\
R_{1} \leq & I\left(U, A ; Y_{1} \mid K, A_{2}\right)-I\left(U ; S \mid K, A_{2}, A\right) \\
& \mathrm{E}\left[\Lambda_{k}(A, X)\right] \leq \lambda_{k}, \quad k=1,2, \ldots, d
\end{aligned}
$$

for some

$$
P_{A, A_{2}, K, U, S, X, Y_{1}, Y_{2}}=P_{A, A_{2}} P_{S \mid A} P_{K, U, X \mid A_{2}, A, S} P_{Y_{1}, Y_{2} \mid S, X} .
$$

Theorem
For the degraded BC with action dependent states and causal SI

$$
\mathcal{R}_{\mathrm{i}} \subseteq \mathcal{C}_{\mathrm{nc}}
$$

Main results

Inner bound
\mathcal{R}_{i} - the collection of all $\left(\lambda, R_{1}, R_{2}\right)$ such that

$$
\begin{aligned}
R_{2} \leq & I\left(K, A_{2} ; Y_{2}\right)-I\left(K ; A, S \mid A_{2}\right) \\
& =I\left(A_{2} ; Y_{2}\right)+I\left(K ; Y_{2} \mid A_{2}\right)-I\left(K ; A, S \mid A_{2}\right) \\
R_{1} \leq & I\left(U, A ; Y_{1} \mid K, A_{2}\right)-I\left(U ; S \mid K, A_{2}, A\right) \\
& \mathrm{E}\left[\Lambda_{k}(A, X)\right] \leq \lambda_{k}, \quad k=1,2, \ldots, d
\end{aligned}
$$

for some

$$
P_{A, A_{2}, K, U, S, X, Y_{1}, Y_{2}}=P_{A, A_{2}} P_{S \mid A} P_{K, U, X \mid A_{2}, A, S} P_{Y_{1}, Y_{2} \mid S, X} .
$$

Theorem
For the degraded BC with action dependent states and causal SI

$$
\mathcal{R}_{\mathrm{i}} \subseteq \mathcal{C}_{\mathrm{nc}}
$$

Main results

Properties of \mathcal{R}_{i}

$$
\begin{gathered}
R_{1} \leq I\left(U, A ; Y_{1} \mid K, A_{2}\right)-I\left(U ; S \mid K, A, A_{2}\right) \\
R_{2} \leq I\left(K, A_{2} ; Y_{2}\right)-I\left(K ; A, S \mid A_{2}\right) \\
\mathrm{E}\left[\Lambda_{k}(A, X)\right] \leq \lambda_{k}, \quad k=1,2, \ldots, d \\
P_{A, A_{2}, K, U, S, X, Y_{1}, Y_{2}}=P_{A_{2}, K, U} P_{A \mid A_{2}, K, U} P_{X \mid A, A_{2}, K, U, S} \\
\cdot P_{S \mid A, A_{2}, K, U} P_{Y_{1}, Y_{2} \mid S, X} .
\end{gathered}
$$

Main results

Properties of \mathcal{R}_{i}

$$
\begin{gathered}
R_{1} \leq I\left(U, A ; Y_{1} \mid K, A_{2}\right)-I\left(U ; S \mid K, A, A_{2}\right) \\
R_{2} \leq I\left(K, A_{2} ; Y_{2}\right)-I\left(K ; A, S \mid A_{2}\right) \\
\mathrm{E}\left[\Lambda_{k}(A, X)\right] \leq \lambda_{k}, \quad k=1,2, \ldots, d \\
P_{A, A_{2}, K, U, S, X, Y_{1}, Y_{2}}=P_{A_{2}, K, U} P_{A \mid A_{2}, K, U} P_{X \mid A, A_{2}, K, U, S} \\
\cdot P_{S \mid A, A_{2}, K, U} P_{Y_{1}, Y_{2} \mid S, X} .
\end{gathered}
$$

- \mathcal{R}_{i} is convex.

Main results

Properties of \mathcal{R}_{i}

$$
\begin{gathered}
R_{1} \leq I\left(U, A ; Y_{1} \mid K, A_{2}\right)-I\left(U ; S \mid K, A, A_{2}\right) \\
R_{2} \leq I\left(K, A_{2} ; Y_{2}\right)-I\left(K ; A, S \mid A_{2}\right) \\
\mathrm{E}\left[\Lambda_{k}(A, X)\right] \leq \lambda_{k}, \quad k=1,2, \ldots, d \\
P_{A, A_{2}, K, U, S, X, Y_{1}, Y_{2}}=P_{A_{2}, K, U} P_{A \mid A_{2}, K, U} P_{X \mid A, A_{2}, K, U, S} \\
\cdot P_{S \mid A, A_{2}, K, U} P_{Y_{1}, Y_{2} \mid S, X} .
\end{gathered}
$$

- \mathcal{R}_{i} is convex.
- To exhaust $\mathcal{R}_{\mathrm{i}}, P_{A \mid A_{2}, K, U}$ and $P_{X \mid A, A_{2}, K, U, S}$ can be $0-1$ laws.

Main results

Properties of \mathcal{R}_{i}

$$
\begin{gathered}
R_{1} \leq I\left(U, A ; Y_{1} \mid K, A_{2}\right)-I\left(U ; S \mid K, A, A_{2}\right) \\
R_{2} \leq I\left(K, A_{2} ; Y_{2}\right)-I\left(K ; A, S \mid A_{2}\right) \\
\mathrm{E}\left[\Lambda_{k}(A, X)\right] \leq \lambda_{k}, \quad k=1,2, \ldots, d \\
P_{A, A_{2}, K, U, S, X, Y_{1}, Y_{2}}=P_{A_{2}, K, U} P_{A \mid A_{2}, K, U} P_{X \mid A, A_{2}, K, U, S} \\
\cdot P_{S \mid A, A_{2}, K, U} P_{Y_{1}, Y_{2} \mid S, X} .
\end{gathered}
$$

- \mathcal{R}_{i} is convex.
- To exhaust $\mathcal{R}_{\mathrm{i}}, P_{A \mid A_{2}, K, U}$ and $P_{X \mid A, A_{2}, K, U, S}$ can be $0-1$ laws. Can drop the A from the bound on R_{1}.

Main results

Properties of \mathcal{R}_{i}

- Bounds on alphabets

$$
\begin{aligned}
\left|\mathcal{A}_{2}\right| \leq & |\mathcal{A S X}|+1 \\
|\mathcal{K}| \leq & |\mathcal{A S X}|(|\mathcal{A S X}|+1)+1 \\
|\mathcal{U}| \leq & |\mathcal{A S X}|[|\mathcal{A S X}|(|\mathcal{A S X}|+1)+1] \\
& \cdot[|\mathcal{A S X}|+1]
\end{aligned}
$$

Main results

Proof technique

- Single user channel:

Main results

Proof technique

- Single user channel:
- An action sequence $A^{n}(m)$ is generated for every message m. The actions generate the state sequence S^{n}

Main results

Proof technique

- Single user channel:
- An action sequence $A^{n}(m)$ is generated for every message m. The actions generate the state sequence S^{n}
- A codebook $K^{n}(j, m)$ is generated for every m, conditioned on A^{n}. Encoder looks for an index j such that $\left(K^{n}(j, m), A^{n}(m), S^{n}\right)$ are jointly typical.

Main results

Proof technique

- Single user channel:
- An action sequence $A^{n}(m)$ is generated for every message m. The actions generate the state sequence S^{n}
- A codebook $K^{n}(j, m)$ is generated for every m, conditioned on A^{n}. Encoder looks for an index j such that ($\left.K^{n}(j, m), A^{n}(m), S^{n}\right)$ are jointly typical.
- BC: In the problem formulation, the action depends on both messages, m_{1} and m_{2}.

Main results

Proof technique

- Single user channel:
- An action sequence $A^{n}(m)$ is generated for every message m. The actions generate the state sequence S^{n}
- A codebook $K^{n}(j, m)$ is generated for every m, conditioned on A^{n}. Encoder looks for an index j such that $\left(K^{n}(j, m), A^{n}(m), S^{n}\right)$ are jointly typical.
- BC: In the problem formulation, the action depends on both messages, m_{1} and m_{2}.
- Cannot start with $A^{n}\left(m_{1}, m_{2}\right)$. (The signal for the weaker user, K, is conditioned on it.)

Main results

Proof technique

- Single user channel:
- An action sequence $A^{n}(m)$ is generated for every message m. The actions generate the state sequence S^{n}
- A codebook $K^{n}(j, m)$ is generated for every m, conditioned on A^{n}. Encoder looks for an index j such that ($\left.K^{n}(j, m), A^{n}(m), S^{n}\right)$ are jointly typical.
- BC: In the problem formulation, the action depends on both messages, m_{1} and m_{2}.
- Cannot start with $A^{n}\left(m_{1}, m_{2}\right)$. (The signal for the weaker user, K, is conditioned on it.)
- Some action should be there.

Main results

Proof technique

$$
\begin{gathered}
R_{2} \leq I\left(K, A_{2} ; Y_{2}\right)-I\left(K ; A, S \mid A_{2}\right) \\
R_{1} \leq I\left(U, A ; Y_{1} \mid K, A_{2}\right)-I\left(U ; S \mid K, A_{2}, A\right) \\
P_{A, A_{2}, K, U, S, X, Y_{1}, Y_{2}}=P_{A, A_{2}} P_{S \mid A} P_{K, U, X \mid A_{2}, A, S} P_{Y_{1}, Y_{2} \mid S, X}
\end{gathered}
$$

Main results

Proof technique

$$
\begin{gathered}
R_{2} \leq I\left(K, A_{2} ; Y_{2}\right)-I\left(K ; A, S \mid A_{2}\right) \\
R_{1} \leq I\left(U, A ; Y_{1} \mid K, A_{2}\right)-I\left(U ; S \mid K, A_{2}, A\right) \\
P_{A, A_{2}, K, U, S, X, Y_{1}, Y_{2}}=P_{A, A_{2}} P_{S \mid A} P_{K, U, X \mid A_{2}, A, S} P_{Y_{1}, Y_{2} \mid S, X}
\end{gathered}
$$

- Generate a sequence $A_{2}^{n}\left(m_{2}\right)$, iid $P_{A_{2}}$.

Main results

Proof technique

$$
\begin{gathered}
R_{2} \leq I\left(K, A_{2} ; Y_{2}\right)-I\left(K ; A, S \mid A_{2}\right) \\
R_{1} \leq I\left(U, A ; Y_{1} \mid K, A_{2}\right)-I\left(U ; S \mid K, A_{2}, A\right) \\
P_{A, A_{2}, K, U, S, X, Y_{1}, Y_{2}}=P_{A, A_{2}} P_{S \mid A} P_{K, U, X \mid A_{2}, A, S} P_{Y_{1}, Y_{2} \mid S, X}
\end{gathered}
$$

- Generate a sequence $A_{2}^{n}\left(m_{2}\right)$, iid $P_{A_{2}}$.
- Generate actions $A^{n}\left(m_{1}, m_{2}\right)$ by $\prod_{i=1}^{n} P_{A \mid A_{2}}\left(\cdot \mid A_{2, i}\left(m_{1}\right)\right)$

Main results

Proof technique

$$
\begin{gathered}
R_{2} \leq I\left(K, A_{2} ; Y_{2}\right)-I\left(K ; A, S \mid A_{2}\right) \\
R_{1} \leq I\left(U, A ; Y_{1} \mid K, A_{2}\right)-I\left(U ; S \mid K, A_{2}, A\right) \\
P_{A, A_{2}, K, U, S, X, Y_{1}, Y_{2}}=P_{A, A_{2}} P_{S \mid A} P_{K, U, X \mid A_{2}, A, S} P_{Y_{1}, Y_{2} \mid S, X}
\end{gathered}
$$

- Generate a sequence $A_{2}^{n}\left(m_{2}\right)$, iid $P_{A_{2}}$.
- Generate actions $A^{n}\left(m_{1}, m_{2}\right)$ by $\prod_{i=1}^{n} P_{A \mid A_{2}}\left(\cdot \mid A_{2, i}\left(m_{1}\right)\right)$
- Generate a codebook $K^{n}\left(j, m_{2}\right)$ by

$$
\prod_{i=1}^{n} P_{K \mid A_{2}}\left(\cdot \mid A_{2, i}\left(m_{2}\right)\right)
$$

Main results

Proof technique

$$
\begin{gathered}
R_{2} \leq I\left(K, A_{2} ; Y_{2}\right)-I\left(K ; A, S \mid A_{2}\right) \\
R_{1} \leq I\left(U, A ; Y_{1} \mid K, A_{2}\right)-I\left(U ; S \mid K, A_{2}, A\right) \\
P_{A, A_{2}, K, U, S, X, Y_{1}, Y_{2}}=P_{A, A_{2}} P_{S \mid A} P_{K, U, X \mid A_{2}, A, S} P_{Y_{1}, Y_{2} \mid S, X}
\end{gathered}
$$

- Generate a sequence $A_{2}^{n}\left(m_{2}\right)$, iid $P_{A_{2}}$.
- Generate actions $A^{n}\left(m_{1}, m_{2}\right)$ by $\prod_{i=1}^{n} P_{A \mid A_{2}}\left(\cdot \mid A_{2, i}\left(m_{1}\right)\right)$
- Generate a codebook $K^{n}\left(j, m_{2}\right)$ by

$$
\prod_{i=1}^{n} P_{K \mid A_{2}}\left(\cdot \mid A_{2, i}\left(m_{2}\right)\right)
$$

- Binning 2: $j_{m_{2}}$ is the smallest integer s.t.

$$
\left(K^{n}\left(j, m_{2}\right), A_{2}^{n}\left(m_{2}\right), A^{n}\left(m_{1}, m_{2}\right), s^{n}\right) \in \mathcal{T}
$$

Main results

Proof technique

$$
\begin{gathered}
R_{2} \leq I\left(K, A_{2} ; Y_{2}\right)-I\left(K ; A, S \mid A_{2}\right) \\
R_{1} \leq I\left(U, A ; Y_{1} \mid K, A_{2}\right)-I\left(U ; S \mid K, A_{2}, A\right) \\
P_{A, A_{2}, K, U, S, X, Y_{1}, Y_{2}}=P_{A, A_{2}} P_{S \mid A} P_{K, U, X \mid A_{2}, A, S} P_{Y_{1}, Y_{2} \mid S, X}
\end{gathered}
$$

- Generate a sequence $A_{2}^{n}\left(m_{2}\right)$, iid $P_{A_{2}}$.
- Generate actions $A^{n}\left(m_{1}, m_{2}\right)$ by $\prod_{i=1}^{n} P_{A \mid A_{2}}\left(\cdot \mid A_{2, i}\left(m_{1}\right)\right)$
- Generate a codebook $K^{n}\left(j, m_{2}\right)$ by

$$
\prod_{i=1}^{n} P_{K \mid A_{2}}\left(\cdot \mid A_{2, i}\left(m_{2}\right)\right)
$$

- Binning 2: $j_{m_{2}}$ is the smallest integer s.t.

$$
\left(K^{n}\left(j, m_{2}\right), A_{2}^{n}\left(m_{2}\right), A^{n}\left(m_{1}, m_{2}\right), s^{n}\right) \in \mathcal{T}
$$

Main results

Outer bound

 \mathcal{R}_{o} - all $\left(R_{1}, R_{2}, \lambda\right)$ such that$$
\begin{aligned}
R_{2} & \leq I\left(K, A_{2} ; Y_{2}\right)-I\left(K ; A, S \mid A_{2}\right) \\
R_{1} & \leq I\left(U, A ; Y_{1} \mid K\right)-I\left(U ; S \mid K, A_{2}, A\right) \\
R_{1}+R_{2} & \leq I\left(U, K, A ; Y_{1}\right)-I(U, K ; S \mid A) \\
E\left[\Lambda_{k}(A, X)\right] & \leq \lambda_{k}, \quad k=1, \ldots, d
\end{aligned}
$$

for some $P_{A, A_{2}, K, U, S, X, Y_{1}, Y_{2}} \in \mathcal{P}$.

Main results

Outer bound

 \mathcal{R}_{o} - all $\left(R_{1}, R_{2}, \lambda\right)$ such that$$
\begin{aligned}
R_{2} & \leq I\left(K, A_{2} ; Y_{2}\right)-I\left(K ; A, S \mid A_{2}\right) \\
R_{1} & \leq I\left(U, A ; Y_{1} \mid K\right)-I\left(U ; S \mid K, A_{2}, A\right) \\
R_{1}+R_{2} & \leq I\left(U, K, A ; Y_{1}\right)-I(U, K ; S \mid A) \\
\mathrm{E}\left[\Lambda_{k}(A, X)\right] & \leq \lambda_{k}, \quad k=1, \ldots, d
\end{aligned}
$$

for some $P_{A, A_{2}, K, U, S, X, Y_{1}, Y_{2}} \in \mathcal{P}$.
Theorem
For any degraded BC with action-dependent non-causal SI

$$
\mathcal{C}_{\mathrm{nc}} \subseteq \mathcal{R}_{\mathrm{o}}
$$

Main results

Properties of \mathcal{R} 。 \mathcal{R}_{o} - all $\left(R_{1}, R_{2}, \lambda\right)$ such that

$$
\begin{aligned}
R_{2} & \leq I\left(K, A_{2} ; Y_{2}\right)-I\left(K ; A, S \mid A_{2}\right) \\
R_{1} & \leq I\left(U, A ; Y_{1} \mid K\right)-I\left(U ; S \mid K, A_{2}, A\right) \\
R_{1}+R_{2} & \leq I\left(U, K, A ; Y_{1}\right)-I(U, K ; S \mid A) \\
\mathrm{E}\left[\Lambda_{k}(A, X)\right] & \leq \lambda_{k}, \quad k=1, \ldots, d
\end{aligned}
$$

for some $P_{A, A_{2}, K, U, S, X, Y_{1}, Y_{2}} \in \mathcal{P}$.

Main results

Properties of \mathcal{R} 。 \mathcal{R}_{o} - all $\left(R_{1}, R_{2}, \lambda\right)$ such that

$$
\begin{aligned}
R_{2} & \leq I\left(K, A_{2} ; Y_{2}\right)-I\left(K ; A, S \mid A_{2}\right) \\
R_{1} & \leq I\left(U, A ; Y_{1} \mid K\right)-I\left(U ; S \mid K, A_{2}, A\right) \\
R_{1}+R_{2} & \leq I\left(U, K, A ; Y_{1}\right)-I(U, K ; S \mid A) \\
\mathrm{E}\left[\Lambda_{k}(A, X)\right] & \leq \lambda_{k}, \quad k=1, \ldots, d
\end{aligned}
$$

for some $P_{A, A_{2}, K, U, S, X, Y_{1}, Y_{2}} \in \mathcal{P}$.

- Convex

Main results

Properties of \mathcal{R} 。 \mathcal{R}_{o} - all $\left(R_{1}, R_{2}, \lambda\right)$ such that

$$
\begin{aligned}
R_{2} & \leq I\left(K, A_{2} ; Y_{2}\right)-I\left(K ; A, S \mid A_{2}\right) \\
R_{1} & \leq I\left(U, A ; Y_{1} \mid K\right)-I\left(U ; S \mid K, A_{2}, A\right) \\
R_{1}+R_{2} & \leq I\left(U, K, A ; Y_{1}\right)-I(U, K ; S \mid A) \\
\mathrm{E}\left[\Lambda_{k}(A, X)\right] & \leq \lambda_{k}, \quad k=1, \ldots, d
\end{aligned}
$$

for some $P_{A, A_{2}, K, U, S, X, Y_{1}, Y_{2}} \in \mathcal{P}$.

- Convex
- Bounds on alphabets

Main results

Informed stronger decoder

- Even without actions, the state-dependent degraded BC with non-causal SI is still an open problem.
- Solved for the case where the stronger user is informed.

Main results

Informed stronger decoder

- Even without actions, the state-dependent degraded BC with non-causal SI is still an open problem.
- Solved for the case where the stronger user is informed.
- For the action-dependent case, we need to restrict the class of costs $\Lambda(A, X)$.

Main results

Informed stronger user

- Separated cost functions $\Lambda^{\text {sep }}$:

Each of the components of Λ depends either only on the actions or only on the channel input:

$$
\begin{aligned}
& \Lambda_{k^{\prime}}^{\text {sep }}\left(A^{n}, X^{n}\right)=\Lambda_{k^{\prime}}^{\text {sep }}\left(A^{n}\right), \quad 1 \leq k^{\prime} \leq d^{\prime}, \\
& \Lambda_{k}^{\text {sep }}\left(A^{n}, X^{n}\right)=\Lambda_{k}^{\text {sep }}\left(X^{n}\right), \quad d^{\prime}+1 \leq k \leq d,
\end{aligned}
$$

for some $0 \leq d^{\prime} \leq d$.

Main results

Informed stronge user

$\mathcal{R}_{\mathrm{nc}}$ - all $\left(R_{1}, R_{2}, \lambda\right)$ such that

$$
\begin{aligned}
R_{2} \leq & I\left(K, A_{2} ; Y_{2}\right)-I\left(K ; S \mid A_{2}\right) \\
R_{1} \leq & I\left(A ; S \mid A_{2}\right)+I\left(X ; Y_{1} \mid S, K, A_{2}\right) \\
& \mathrm{E}\left[\Lambda_{k}^{\text {sep }}(A, X)\right] \leq \lambda_{k}, \quad k=1,2, \ldots, d
\end{aligned}
$$

for some

$$
P_{A, A_{2}} P_{S \mid A} P_{K \mid A, A_{2}, S} P_{X \mid K, A_{2}, S} P_{Y_{1}, Y_{2} \mid S, X}
$$

Main results

Informed stronger user

$$
\begin{aligned}
R_{2} \leq & I\left(K, A_{2} ; Y_{2}\right)-I\left(K ; S \mid A_{2}\right) \\
R_{1} \leq & I\left(A ; S \mid A_{2}\right)+I\left(X ; Y_{1} \mid S, K, A_{2}\right) \\
& \quad \mathrm{E}\left[\Lambda_{k}^{\text {sep }}(A, X)\right] \leq \lambda_{k}, \quad k=1,2, \ldots, d \\
& P_{A, A_{2}} P_{S \mid A} P_{K \mid A, A_{2}, S} P_{X \mid K, A_{2}, S} P_{Y_{1}, Y_{2} \mid S, X}
\end{aligned}
$$

Theorem
For any DBC with action-dependent non-causal SI, informed stronger user, and separated cost functions

$$
\mathcal{C}_{\mathrm{nc}}=\mathcal{R}_{\mathrm{nc}}
$$

Main results

Informed stronger user

$$
\begin{aligned}
& R_{2} \leq I\left(K, A_{2} ; Y_{2}\right)-I\left(K ; S \mid A_{2}\right) \\
& R_{1} \leq I\left(A ; S \mid A_{2}\right)+I\left(X ; Y_{1} \mid S, K, A_{2}\right) \\
& \quad \mathrm{E}\left[\Lambda_{k}^{\text {sep }}(A, X)\right] \leq \lambda_{k}, \quad k=1,2, \ldots, d \\
& \quad P_{A, A_{2}} P_{S \mid A} P_{K \mid A, A_{2}, S} P_{X \mid K, A_{2}, S} P_{Y_{1}, Y_{2} \mid S, X}
\end{aligned}
$$

Main results

Informed stronger user

$$
\begin{aligned}
R_{2} \leq & I\left(K, A_{2} ; Y_{2}\right)-I\left(K ; S \mid A_{2}\right) \\
R_{1} \leq & I\left(A ; S \mid A_{2}\right)+I\left(X ; Y_{1} \mid S, K, A_{2}\right) \\
& \quad \mathrm{E}\left[\Lambda_{k}^{\text {sep }}(A, X)\right] \leq \lambda_{k}, \quad k=1,2, \ldots, d \\
& P_{A, A_{2}} P_{S \mid A} P_{K \mid A, A_{2}, S} P_{X \mid K, A_{2}, S} P_{Y_{1}, Y_{2} \mid S, X}
\end{aligned}
$$

- User 2: As in single user channel, with actions A_{2}.

Main results

Informed stronger user

$$
\begin{aligned}
R_{2} \leq & I\left(K, A_{2} ; Y_{2}\right)-I\left(K ; S \mid A_{2}\right) \\
R_{1} \leq & I\left(A ; S \mid A_{2}\right)+I\left(X ; Y_{1} \mid S, K, A_{2}\right) \\
& \quad \mathrm{E}\left[\Lambda_{k}^{\text {sep }}(A, X)\right] \leq \lambda_{k}, \quad k=1,2, \ldots, d \\
& P_{A, A_{2}} P_{S \mid A} P_{K \mid A, A_{2}, S} P_{X \mid K, A_{2}, S} P_{Y_{1}, Y_{2} \mid S, X}
\end{aligned}
$$

- User 2: As in single user channel, with actions A_{2}.
- User 1: coding in two separate stages:
- Via the actions A directly to S
- Via X to Y_{1}, conditioned on (S, K, A_{2}).

Main results

Informed stronger user

$$
\begin{aligned}
R_{2} \leq & I\left(K, A_{2} ; Y_{2}\right)-I\left(K ; S \mid A_{2}\right) \\
R_{1} \leq & I\left(A ; S \mid A_{2}\right)+I\left(X ; Y_{1} \mid S, K, A_{2}\right) \\
& \quad \mathrm{E}\left[\Lambda_{k}^{\text {sep }}(A, X)\right] \leq \lambda_{k}, \quad k=1,2, \ldots, d \\
& P_{A, A_{2}} P_{S \mid A} P_{K \mid A, A_{2}, S} P_{X \mid K, A_{2}, S} P_{Y_{1}, Y_{2} \mid S, X}
\end{aligned}
$$

- User 2: As in single user channel, with actions A_{2}.
- User 1: coding in two separate stages:
- Via the actions A directly to S
- Via X to Y_{1}, conditioned on (S, K, A_{2}).
- Conditioned on $\left(S, K, A_{2}\right), X$ indep of A.

Main results

Problem
 formulation

Informed stronger user
Converse:

Previous results

Main results

Inner bound
Properties of \mathcal{R}_{i}
Proof technique
Outer bound
Properties of \mathcal{R}_{0}
Informed stronger user

Summary \& future work

Main results

Informed stronger user

Converse:

- User 2 - as in single user.

Main results

Informed stronger user

Converse:

- User 2 - as in single user.
- User 1 - can get a bound of the form

$$
n R_{1}-n \epsilon_{n} \leq \sum_{i=1}^{n} I\left(A_{i} ; S_{i} \mid A_{2, i}\right)+I\left(X_{i} ; Y_{1, i} \mid S_{i}, K_{i}, A_{2, i}\right)
$$

Main results

Informed stronger user

Converse:

- User 2 - as in single user.
- User 1 - can get a bound of the form

$$
n R_{1}-n \epsilon_{n} \leq \sum_{i=1}^{n} I\left(A_{i} ; S_{i} \mid A_{2, i}\right)+I\left(X_{i} ; Y_{1, i} \mid S_{i}, K_{i}, A_{2, i}\right)
$$

- For a general code, $X_{i}-\left(S_{i}, K_{i}, A_{2, i}\right)-A_{i}$ does not hold

Main results

Informed stronger user

Converse:

- User 2 - as in single user.
- User 1 - can get a bound of the form

$$
n R_{1}-n \epsilon_{n} \leq \sum_{i=1}^{n} I\left(A_{i} ; S_{i} \mid A_{2, i}\right)+I\left(X_{i} ; Y_{1, i} \mid S_{i}, K_{i}, A_{2, i}\right)
$$

- For a general code, $X_{i}-\left(S_{i}, K_{i}, A_{2, i}\right)-A_{i}$ does not hold
- If X and A do not appear together, we do not have to preserve their joint distribution

Main results

Informed stronger user

Converse:

- User 2 - as in single user.
- User 1 - can get a bound of the form

$$
n R_{1}-n \epsilon_{n} \leq \sum_{i=1}^{n} I\left(A_{i} ; S_{i} \mid A_{2, i}\right)+I\left(X_{i} ; Y_{1, i} \mid S_{i}, K_{i}, A_{2, i}\right)
$$

- For a general code, $X_{i}-\left(S_{i}, K_{i}, A_{2, i}\right)-A_{i}$ does not hold
- If X and A do not appear together, we do not have to preserve their joint distribution

$$
\Longrightarrow \Lambda^{\text {sep }}
$$

Summary

- Developed inner and outer bounds on the capacity region of the degraded $B C$ with action-dependent states and non-causal SI.
- The case of informed stronger user is solved.
- Future work: General (non-informed) setting. Good examples.

