Previous results

Main results

Summary & future work

The Degraded Broadcast Channel with Non-Causal Action-Dependent Side Information

Yossef Steinberg

ISIT 2013

The "regular" state-dependent BC:

Channel encoder:

$$X_i = f(m_1, m_2, S^n) \quad \text{(non-causal SI)}$$
$$X_i = f(m_1, m_2, S^i) \quad \text{(causal SI)}$$
$$\bullet \quad \frac{1}{n} \sum_{i=1}^n \Lambda(X_i) \le \lambda$$
$$P\left((\hat{m}_1, \hat{m}_2) \neq (m_1, m_2)\right) \le \epsilon$$

Problem formulation

Motivation The basic setup

Previous results

Main results

Summary & future work

Action-dependent states:

- Motivation The basic setup
- Previous results
- Main results
- Summary & future work

Encoding is performed in two parts:

▶ Given the pair of messages, an *action sequence* Aⁿ is created.

The actions generate a sequence of states S^n , via $P_{S|A}$. S^n is available at the encoder (causally or noncausally).

The encoder produces the channel input as a function of the messages and the states Sⁿ.

- Motivation The basic setup
- Previous results
- Main results
- Summary & future work

Problem formulation

Action-dependent states:

Two possible models

$$X_i = f(m_1, m_2, S^n)$$
 (non-causal SI)
 $X_i = f(m_1, m_2, S^i)$ (causal SI)

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

- Motivation The basic setup
- Previous results
- Main results
- Summary & future work

Problem formulation

Action-dependent states:

Two possible models

$$X_i = f(m_1, m_2, S^n)$$
 (non-causal SI)
 $X_i = f(m_1, m_2, S^i)$ (causal SI)

 Causal case solved [S & Weissman 2012], [Ahmedi & Simeone 2012].

Problem formulation

Motivation

Previous results

Main results

Summary & future work Controlling the channel: sometimes, the user can affect the channel statistics (state), albeit at a certain cost.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Problem formulation

Motivation

The basic setup

Previous results

Main results

Summary & future work Controlling the channel: sometimes, the user can affect the channel statistics (state), albeit at a certain cost.

 More specific channels: Channels (memories) with a rewrite option [Weissman 2010].

Problem formulation

Motivation

The basic setup

Previous results

Main results

Summary & future work

- Controlling the channel: sometimes, the user can affect the channel statistics (state), albeit at a certain cost.
- More specific channels: Channels (memories) with a rewrite option [Weissman 2010].
- Harvesting capacity with energy storage: Actions model the use of energy stored in the battery. Influence the channel state (=total energy in battery).

Problem formulation

Motivation

The basic setup

Previous results

Main results

Summary & future work

- Controlling the channel: sometimes, the user can affect the channel statistics (state), albeit at a certain cost.
- More specific channels: Channels (memories) with a rewrite option [Weissman 2010].
- Harvesting capacity with energy storage: Actions model the use of energy stored in the battery. Influence the channel state (=total energy in battery).

• Cost of retrieving side information.

Problem formulation

Motivation

The basic setup

Previous results

Main results

Summary & future work

- Controlling the channel: sometimes, the user can affect the channel statistics (state), albeit at a certain cost.
- More specific channels: Channels (memories) with a rewrite option [Weissman 2010].
- Harvesting capacity with energy storage: Actions model the use of energy stored in the battery. Influence the channel state (=total energy in battery).

• Cost of retrieving side information.

Problem formulation

Motivation

The basic setup

Previous results

Main results

Summary & future work

- Controlling the channel: sometimes, the user can affect the channel statistics (state), albeit at a certain cost.
- More specific channels: Channels (memories) with a rewrite option [Weissman 2010].
- Harvesting capacity with energy storage: Actions model the use of energy stored in the battery. Influence the channel state (=total energy in battery).

• Cost of retrieving side information.

Motivation

The basic setup

Previous results

Main results

Summary & future work

Motivation Cost of retrieving SI:

In "regular" channel coding with SI, state is produced by nature (not by actions). It is either *available* at the encoder, or *absent*. No intermediate situation, and no cost on retrieving it.

イロト 不得 トイヨト イヨト

э

Motivation

The basic setup

Previous results

Main results

Summary & future work

Motivation

Cost of retrieving SI:

Motivation

The basic setup

Previous results

Main results

Summary & future work

Motivation

Cost of retrieving SI:

イロト 不得 とうほう 不良 とう

3

► *S* is produced by nature

Motivation

The basic setup

Previous results

Main results

Summary & future work

Motivation

Cost of retrieving SI:

- ► *S* is produced by nature
- Side information is not available for free we have to "go out and get it," or install expensive (and noisy) sensors to get it.

Motivation

The basic setup

Previous results

Main results

Summary & future work

Motivation

Cost of retrieving SI:

- ► *S* is produced by nature
- Side information is not available for free we have to "go out and get it," or install expensive (and noisy) sensors to get it.
- The actions determine the availability (and quality) of side information at the encoder - S_e.

Motivation

The basic setup

Previous results

Main results

Summary & future work

Motivation

Cost of retrieving SI:

Probing capacity. Introduced in the context of single user channels by Asnani, Permuter, & Weissman, 2010.

- Motivation The basic setup
- Previous results
- Main results
- Summary & future work

Problem formulation

The basic setup:

- Memoryless channel
- Non causal SI: $X_i = f(m_1, m_2, S^n)$
- Cost on input and actions:

$$\frac{1}{n}\sum_{i=1}^{n}\Lambda(A_{i},X_{i})\leq\lambda$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Previous results

Actions

BC BC+Actions, Causal

Main results

Summary & future work

Previous results

Action dependent channels and sources

- Weissman 2010 Introduced action dependent channels.
 - Capacity of single user channels, causal and non-causal models.
 - Bounds on the capacity of rewrite channels.
 - Connection to certain MAC models.
- ► H. Asnani, H. Permuter, & T. Weissman 2010 (arXiv) -Probing capacity: to observe or not to observe the side information? (P_{Se|S,A}).
- Permuter & Weissman 2011 Actions in the context of source coding: the side information vending machine
- Y.-K. Chia, H. Asnani, & T. Weissman 2011 (arXiv) -Multiterminal source coding with action dependent side information

Problem

Previous results

Actions

BC BC+Actions, Causal

Main results

Summary & future work

Previous results

Action dependent single user channels

Causal case (Weissman 2010):

 $C_{c} = \max I(U, A; Y)$ $E[\Lambda(A, X)] \le \lambda$

 $P_{U,A}P_{S|A}P_{X|S,U,A}P_{Y|S,X}$

Previous results

Action dependent single user channels

Causal case (Weissman 2010):

$$C_{c} = \max I(U, A; Y) = I(A; Y) + I(U; Y|A)$$
$$E[\Lambda(A, X)] \le \lambda$$

 $P_{U,A}P_{S|A}P_{X|S,U,A}P_{Y|S,X}$

Problem formulatior

Previous result

Actions

BC BC+Actions, Causal

Main results

Summary & future work

Problem

Previous results

Actions

BC BC+Actions, Causa

Main results

Summary & future work

Previous results

Action dependent single user channels

Causal case (Weissman 2010):

$$C_{c} = \max I(U, A; Y) = I(A; Y) + I(U; Y|A)$$
$$E[\Lambda(A, X)] \le \lambda$$

$$P_{U,A}P_{S|A}P_{X|S,U,A}P_{Y|S,X}$$

Non causal case (Weisman 2010)

$$C_{nc} = \max I(U, A; Y) - I(U; S|A)$$
$$E[\Lambda(A, X)] \le \lambda$$

 $P_A P_{S|A} P_{U|S,A} P_{X|S,U,A} P_{Y|S,X}$

Problem

Previous results

Actions

BC BC+Actions, Causal

Main results

Summary & future work

Previous results

Action dependent single user channels

Causal case (Weissman 2010):

$$C_{c} = \max I(U, A; Y) = I(A; Y) + I(U; Y|A)$$
$$E[\Lambda(A, X)] \le \lambda$$

$$P_{U,A}P_{S|A}P_{X|S,U,A}P_{Y|S,X}$$

Non causal case (Weisman 2010)

 $C_{nc} = \max I(U, A; Y) - I(U; S|A) = I(A; Y) + I(U; Y|A)$ $E[\Lambda(A, X)] \le \lambda$

 $P_A P_{S|A} P_{U|S,A} P_{X|S,U,A} P_{Y|S,X}$

Previous results

Actions

BC BC+Actions, Causal

Main results

Summary & future work

Previous results

Action dependent single user channels

Causal case (Weissman 2010):

$$C_{c} = \max I(U, A; Y) = I(A; Y) + I(U; Y|A)$$
$$E[\Lambda(A, X)] \le \lambda$$

$$P_{U,A}P_{S|A}P_{X|S,U,A}P_{Y|S,X}$$

Non causal case (Weisman 2010)

 $C_{nc} = \max I(U, A; Y) - I(U; S|A) = I(A; Y) + I(U; Y|A)$ $E[\Lambda(A, X)] \le \lambda$

$$P_A P_{S|A} P_{U|S,A} P_{X|S,U,A} P_{Y|S,X}$$

In both cases, X can be taken to be a deterministic function of (U, S), and A a deterministic function of U.

Problem

Previous results

Actions BC BC+Actions, Causa

Main results

Summary & future work

Previous results

State dependent broadcast channels

- S 2002, 2005 Degraded, state dependent BC:
 - Capacity region for causal SI
 - Inner and outer bounds for non-causal SI
 - Capacity region for non-causal SI, where the stronger user is informed

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Previous results

Actions BC BC+Actions, Causal

Main results

Summary & future work

Previous results

State dependent broadcast channels

- S 2002, 2005 Degraded, state dependent BC:
 - Capacity region for causal SI
 - Inner and outer bounds for non-causal ${\sf SI}$
 - Capacity region for non-causal SI, where the stronger user is informed

- S & Shamai ISIT 2005:
 - Inner bounds for the general state dependent BC (Marton region + GP).

Previous results

Actions BC BC+Actions, Causal

Main results

Summary & future work

Previous results

State dependent BC

A state dependent BC $P_{Y_1,Y_2\mid \mathcal{S}, \mathcal{X}}$ is called physically degraded if

$$P_{Y_1,Y_2|S,X} = P_{Y_1|S,X} \cdot P_{Y_2|Y_1}$$

and stochastically degraded if

$$P_{Y_2|S,X}(y_2|s,x) = \sum_{y_1} P_{Y_1,Y_2|S,X}(y_1,y_2|s,x) \cdot W_{Y_2|Y_1}(y_2|y_2)$$

for some $W_{Y_2|Y_1}$.

Previous results

Actions BC BC+Actions, Causal

Main results

Summary & future work

Previous results

BC + Actions, the causal case

 \mathcal{R}_{c} - the collection of all $(\lambda, \mathit{R}_1, \mathit{R}_2)$ such that

$$egin{aligned} &R_1 \leq I(U,A;Y_1|K)\ &R_2 \leq I(K;Y_2)\ & extsf{E}\left[\Lambda_k(A,X)
ight] \leq \lambda_k, \quad k=1,2,\dots,d \end{aligned}$$

for some

$$P_{A,K,U,S,X,Y,Z} = P_{K,U}P_{A|K,U}P_{X|A,K,U,S}P_{S|A}P_{Y_1,Y_2|S,X}.$$

Theorem

For the degraded BC with action dependent states and causal SI

$$C_{c} = \mathcal{R}_{c}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

[S. & Weissman, 2012], [Ahmedi & Simeone, 2012].

Previous results

Actions BC BC+Actions, Causal Previous results

BC + Actions, the causal case

Main results

Summary & future work

 $\begin{aligned} R_1 &\leq I(U, A; Y_1 | K) &= I(A; Y_1 | K) + I(U; Y_1 | K, A) \\ R_2 &\leq I(K; Y_2) \\ \mathsf{E} \left[\Lambda_k(A, X) \right] &\leq \lambda_k, \quad k = 1, 2, \dots, d \end{aligned}$

 $P_{A,K,U,S,X,Y,Z} = P_{K,U}P_{A|K,U}P_{X|A,K,U,S}P_{S|A}P_{Y_1,Y_2|S,X}.$

Main results

Previous results

Main results

Inner bound

Properties of \mathcal{R}_i Proof technique Outer bound Properties of \mathcal{R}_o Informed stronger use

Summary & future work

- Memoryless channel
- Non causal SI: $X_i = f(m_1, m_2, S^n)$
- Cost on input and actions:

$$\frac{1}{n}\sum_{i=1}^{n}\Lambda(A_{i},X_{i})\leq\lambda\qquad(\Lambda,\ \lambda\in R^{d})$$

Main results

Previous results

Main results

Inner bound

Properties of \mathcal{R}_i Proof technique Outer bound Properties of \mathcal{R}_o Informed stronger use

Summary & future work

- ► Capacity region: C_{nc}
- C_{nc} depends on $P_{Y_1,Y_2|S,X}$ only via $P_{Y_1|S,X}$ and $P_{Y_2|S,X}$.

 \Rightarrow No distinction has to be made between physically and stochastically degraded channels. General term: degraded.

Previous results

Main results

Inner bound

Properties of \mathcal{R}_i Proof technique Outer bound Properties of \mathcal{R}_o Informed stronger user

Summary & futur work

Main results

Inner bound

 \mathcal{R}_{i} - the collection of all (λ, R_{1}, R_{2}) such that

$$R_2 \leq I(K, A_2; Y_2) - I(K; A, S|A_2)$$

$$R_{1} \leq I(U, A; Y_{1}|K, A_{2}) - I(U; S|K, A_{2}, A)$$
$$E[\Lambda_{k}(A, X)] \leq \lambda_{k}, \quad k = 1, 2, ..., d$$

for some

$$P_{A,A_2,K,U,S,X,Y_1,Y_2} = P_{A,A_2} P_{S|A} P_{K,U,X|A_2,A,S} P_{Y_1,Y_2|S,X}.$$

Theorem

For the degraded BC with action dependent states and causal SI

$$\mathcal{R}_i \subseteq \mathcal{C}_{nc}.$$

Previous results

Main results

Inner bound

Properties of \mathcal{R}_i Proof technique Outer bound Properties of \mathcal{R}_o Informed stronger use

Summary & futur work

Main results

Inner bound

 \mathcal{R}_{i} - the collection of all (λ, R_{1}, R_{2}) such that

$$R_{2} \leq I(K, A_{2}; Y_{2}) - I(K; A, S|A_{2})$$

= $I(A_{2}; Y_{2}) + I(K; Y_{2}|A_{2}) - I(K; A, S|A_{2})$
 $R_{1} \leq I(U, A; Y_{1}|K, A_{2}) - I(U; S|K, A_{2}, A)$
 $E[\Lambda_{k}(A, X)] \leq \lambda_{k}, \quad k = 1, 2, ..., d$

for some

$$P_{A,A_2,K,U,S,X,Y_1,Y_2} = P_{A,A_2}P_{S|A}P_{K,U,X|A_2,A,S}P_{Y_1,Y_2|S,X}.$$

Theorem

For the degraded BC with action dependent states and causal SI

$$\mathcal{R}_i \subseteq \mathcal{C}_{nc}.$$

Previous results

Main results

Inner bound

Properties of \mathcal{R}_i Proof technique Outer bound Properties of \mathcal{R}_o Informed stronger use

Summary & futur work

Main results

Properties of \mathcal{R}_i

$$R_{1} \leq I(U, A; Y_{1}|K, A_{2}) - I(U; S|K, A, A_{2})$$
$$R_{2} \leq I(K, A_{2}; Y_{2}) - I(K; A, S|A_{2})$$
$$E[\Lambda_{k}(A, X)] \leq \lambda_{k}, \quad k = 1, 2, ..., d$$

$$P_{A,A_{2},K,U,S,X,Y_{1},Y_{2}} = P_{A_{2},K,U}P_{A|A_{2},K,U}P_{X|A,A_{2},K,U,S}$$
$$\cdot P_{S|A,A_{2},K,U}P_{Y_{1},Y_{2}|S,X} \cdot$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Previous results

Main results

Inner bound

Properties of \mathcal{R}_i Proof technique Outer bound Properties of \mathcal{R}_o Informed stronger use

Summary & future work

Main results

Properties of \mathcal{R}_i

$$R_{1} \leq I(U, A; Y_{1}|K, A_{2}) - I(U; S|K, A, A_{2})$$
$$R_{2} \leq I(K, A_{2}; Y_{2}) - I(K; A, S|A_{2})$$
$$E[\Lambda_{k}(A, X)] \leq \lambda_{k}, \quad k = 1, 2, ..., d$$

$$P_{A,A_{2},K,U,S,X,Y_{1},Y_{2}} = P_{A_{2},K,U}P_{A|A_{2},K,U}P_{X|A,A_{2},K,U,S}$$
$$\cdot P_{S|A,A_{2},K,U}P_{Y_{1},Y_{2}|S,X}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

▶ \mathcal{R}_i is convex.

Previous results

Main results

Inner bound

Properties of \mathcal{R}_i Proof technique Outer bound Properties of \mathcal{R}_o Informed stronger use

Summary & future work

Main results

Properties of \mathcal{R}_i

$$R_{1} \leq I(U, A; Y_{1}|K, A_{2}) - I(U; S|K, A, A_{2})$$
$$R_{2} \leq I(K, A_{2}; Y_{2}) - I(K; A, S|A_{2})$$
$$E[\Lambda_{k}(A, X)] \leq \lambda_{k}, \quad k = 1, 2, ..., d$$

$$P_{A,A_2,K,U,S,X,Y_1,Y_2} = P_{A_2,K,U} P_{A|A_2,K,U} P_{X|A,A_2,K,U,S}$$
$$\cdot P_{S|A,A_2,K,U} P_{Y_1,Y_2|S,X} \cdot$$

*R*_i is convex.

► To exhaust \mathcal{R}_i , $P_{A|A_2,K,U}$ and $P_{X|A,A_2,K,U,S}$ can be 0-1 laws.

Previous results

Main results

Inner bound

Properties of \mathcal{R}_i Proof technique Outer bound Properties of \mathcal{R}_o Informed stronger use

Summary & future work

Main results

Properties of \mathcal{R}_i

$$R_{1} \leq I(U, A; Y_{1}|K, A_{2}) - I(U; S|K, A, A_{2})$$
$$R_{2} \leq I(K, A_{2}; Y_{2}) - I(K; A, S|A_{2})$$
$$E[\Lambda_{k}(A, X)] \leq \lambda_{k}, \quad k = 1, 2, ..., d$$

$$P_{A,A_2,K,U,S,X,Y_1,Y_2} = P_{A_2,K,U} P_{A|A_2,K,U} P_{X|A,A_2,K,U,S}$$
$$\cdot P_{S|A,A_2,K,U} P_{Y_1,Y_2|S,X} \cdot$$

*R*_i is convex.

► To exhaust R_i, P_{A|A2,K,U} and P_{X|A,A2,K,U,S} can be 0 - 1 laws. Can drop the A from the bound on R₁.

Previous results

Main results

Inner bound

Properties of \mathcal{R}_i Proof technique Outer bound Properties of \mathcal{R}_o Informed stronger use

Summary & future work

Main results

Properties of \mathcal{R}_i

Bounds on alphabets

$$\begin{split} |\mathcal{A}_2| &\leq |\mathcal{ASX}| + 1 \\ |\mathcal{K}| &\leq |\mathcal{ASX}| \left(|\mathcal{ASX}| + 1 \right) + 1 \\ |\mathcal{U}| &\leq |\mathcal{ASX}| [|\mathcal{ASX}| \left(|\mathcal{ASX}| + 1 \right) + 1] \\ &\cdot [|\mathcal{ASX}| + 1] \end{split}$$

Previous results

Main results

Inner bound Properties of \mathcal{R}_i **Proof technique** Outer bound Properties of \mathcal{R}_o Informed stronger use

Summary & future work

Main results

Proof technique

► Single user channel:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Previous results

Main results

Inner bound Properties of \mathcal{R}_i **Proof technique** Outer bound Properties of \mathcal{R}_o Informed stronger use

Summary & future work

Main results

Proof technique

- Single user channel:
 - An action sequence $A^n(m)$ is generated for every

message m. The actions generate the state sequence S^n

Previous results

Main results

Inner bound Properties of \mathcal{R}_i **Proof technique** Outer bound Properties of \mathcal{R}_o Informed stronger us

Summary & future work

Main results

Proof technique

- Single user channel:
 - An action sequence Aⁿ(m) is generated for every message m. The actions generate the state sequence Sⁿ

A codebook Kⁿ(j, m) is generated for every m,
 conditioned on Aⁿ. Encoder looks for an index j such that (Kⁿ(j, m), Aⁿ(m), Sⁿ) are jointly typical.

Previous results

Main results

Inner bound Properties of \mathcal{R}_i **Proof technique** Outer bound Properties of \mathcal{R}_o Informed stronger us

Summary & future work

Main results

Proof technique

- Single user channel:
 - An action sequence Aⁿ(m) is generated for every message m. The actions generate the state sequence Sⁿ
 - A codebook Kⁿ(j, m) is generated for every m,
 conditioned on Aⁿ. Encoder looks for an index j such that (Kⁿ(j, m), Aⁿ(m), Sⁿ) are jointly typical.

 BC: In the problem formulation, the action depends on both messages, m₁ and m₂.

Previous results

Main results

Inner bound Properties of \mathcal{R}_i **Proof technique** Outer bound Properties of \mathcal{R}_o Informed stronger us

Summary & future work

Main results

Proof technique

- Single user channel:
 - An action sequence Aⁿ(m) is generated for every message m. The actions generate the state sequence Sⁿ
 - A codebook Kⁿ(j, m) is generated for every m,
 conditioned on Aⁿ. Encoder looks for an index j such that (Kⁿ(j, m), Aⁿ(m), Sⁿ) are jointly typical.
- BC: In the problem formulation, the action depends on both messages, m₁ and m₂.
 - Cannot start with Aⁿ(m₁, m₂). (The signal for the weaker user, K, is conditioned on it.)

Previous results

Main results

Inner bound Properties of \mathcal{R}_i **Proof technique** Outer bound Properties of \mathcal{R}_0 Informed stronger use

Summary & future work

Main results

Proof technique

- Single user channel:
 - An action sequence Aⁿ(m) is generated for every message m. The actions generate the state sequence Sⁿ
 - A codebook Kⁿ(j, m) is generated for every m,
 conditioned on Aⁿ. Encoder looks for an index j such that (Kⁿ(j, m), Aⁿ(m), Sⁿ) are jointly typical.
- BC: In the problem formulation, the action depends on both messages, m₁ and m₂.
 - Cannot start with Aⁿ(m₁, m₂). (The signal for the weaker user, K, is conditioned on it.)

Some action should be there.

Previous results

Main results

Inner bound Properties of \mathcal{R}_i **Proof technique** Outer bound Properties of \mathcal{R}_o Informed stronger u

Summary & future work

Main results

Proof technique

 $R_2 \leq I(K, A_2; Y_2) - I(K; A, S|A_2)$ $R_1 \leq I(U, A; Y_1 | K, A_2) - I(U; S | K, A_2, A)$

$$P_{A,A_2,K,U,S,X,Y_1,Y_2} = P_{A,A_2} P_{S|A} P_{K,U,X|A_2,A,S} P_{Y_1,Y_2|S,X}.$$

Previous results

Main results

Inner bound Properties of \mathcal{R}_i **Proof technique** Outer bound Properties of \mathcal{R}_o Informed stronger us

Summary & future work

Main results

Proof technique

$$R_{2} \leq I(K, A_{2}; Y_{2}) - I(K; A, S|A_{2})$$

$$R_{1} \leq I(U, A; Y_{1}|K, A_{2}) - I(U; S|K, A_{2}, A)$$

$$P_{A,A_2,K,U,S,X,Y_1,Y_2} = P_{A,A_2} P_{S|A} P_{K,U,X|A_2,A,S} P_{Y_1,Y_2|S,X}.$$

• Generate a sequence $A_2^n(m_2)$, iid P_{A_2} .

Previous results

Main results

Inner bound Properties of \mathcal{R}_i **Proof technique** Outer bound Properties of \mathcal{R}_o Informed stronger us

Summary & future work

Main results

Proof technique

$$R_{2} \leq I(K, A_{2}; Y_{2}) - I(K; A, S|A_{2})$$

$$R_{1} \leq I(U, A; Y_{1}|K, A_{2}) - I(U; S|K, A_{2}, A)$$

$$P_{A,A_2,K,U,S,X,Y_1,Y_2} = P_{A,A_2} P_{S|A} P_{K,U,X|A_2,A,S} P_{Y_1,Y_2|S,X}.$$

- Generate a sequence $A_2^n(m_2)$, iid P_{A_2} .
- Generate actions $A^n(m_1, m_2)$ by $\prod_{i=1}^n P_{A|A_2}(\cdot|A_{2,i}(m_1))$

Previous results

Inner bound

Proof technique

Outer bound Properties of \mathcal{R}_0 Informed stronger use

Summary & future work

Main results

Proof technique

$$R_2 \le I(K, A_2; Y_2) - I(K; A, S|A_2)$$

$$R_1 \le I(U, A; Y_1|K, A_2) - I(U; S|K, A_2, A)$$

$$P_{A,A_2,K,U,S,X,Y_1,Y_2} = P_{A,A_2} P_{S|A} P_{K,U,X|A_2,A,S} P_{Y_1,Y_2|S,X}.$$

- Generate a sequence $A_2^n(m_2)$, iid P_{A_2} .
- Generate actions $A^n(m_1, m_2)$ by $\prod_{i=1}^n P_{A|A_2}(\cdot|A_{2,i}(m_1))$

• Generate a codebook $K^n(j, m_2)$ by $\prod_{i=1}^n P_{K|A_2}(\cdot|A_{2,i}(m_2))$

Previous results

Main results

Inner bound Properties of \mathcal{R}_i **Proof technique** Outer bound Properties of \mathcal{R}_o Informed stronger us

Summary & future work

Main results

Proof technique

$$R_2 \leq I(K, A_2; Y_2) - I(K; A, S|A_2)$$

 $R_1 \leq I(U, A; Y_1|K, A_2) - I(U; S|K, A_2, A)$

$$P_{A,A_2,K,U,S,X,Y_1,Y_2} = P_{A,A_2} P_{S|A} P_{K,U,X|A_2,A,S} P_{Y_1,Y_2|S,X}.$$

- Generate a sequence $A_2^n(m_2)$, iid P_{A_2} .
- Generate actions $A^n(m_1, m_2)$ by $\prod_{i=1}^n P_{A|A_2}(\cdot|A_{2,i}(m_1))$
- Generate a codebook $K^n(j, m_2)$ by $\prod_{i=1}^n P_{K|A_2}(\cdot|A_{2,i}(m_2))$
- Binning 2: j_{m_2} is the smallest integer s.t.

 $(K^{n}(j, m_{2}), A^{n}_{2}(m_{2}), A^{n}(m_{1}, m_{2}), s^{n}) \in \mathcal{T}$

Previous results

Main results

Inner bound Properties of \mathcal{R}_i **Proof technique** Outer bound Properties of \mathcal{R}_o Informed stronger us

Summary & future work

Main results

Proof technique

$$R_2 \le I(K, A_2; Y_2) - I(K; A, S|A_2)$$

$$R_1 \le I(U, A; Y_1|K, A_2) - I(U; S|K, A_2, A)$$

$$P_{A,A_2,K,U,S,X,Y_1,Y_2} = P_{A,A_2} P_{S|A} P_{K,U,X|A_2,A,S} P_{Y_1,Y_2|S,X}.$$

- Generate a sequence $A_2^n(m_2)$, iid P_{A_2} .
- Generate actions $A^n(m_1, m_2)$ by $\prod_{i=1}^n P_{A|A_2}(\cdot|A_{2,i}(m_1))$
- Generate a codebook $K^n(j, m_2)$ by $\prod_{i=1}^n P_{K|A_2}(\cdot|A_{2,i}(m_2))$
- Binning 2: j_{m_2} is the smallest integer s.t.

 $(K^{n}(j, m_{2}), A^{n}_{2}(m_{2}), A^{n}(m_{1}, m_{2}), s^{n}) \in \mathcal{T}$

Previous results

Main results

Inner bound Properties of \mathcal{R}_i Proof technique **Outer bound**

Properties of \mathcal{R}_{o} Informed stronger use

Summary & future work

Main results

Outer bound

 \mathcal{R}_{o} - all $(\mathcal{R}_1, \mathcal{R}_2, \lambda)$ such that

$$\begin{aligned} R_2 &\leq I(K, A_2; Y_2) - I(K; A, S|A_2) \\ R_1 &\leq I(U, A; Y_1|K) - I(U; S|K, A_2, A) \\ R_1 + R_2 &\leq I(U, K, A; Y_1) - I(U, K; S|A) \\ \mathsf{E}\left[\Lambda_k(A, X)\right] &\leq \lambda_k, \quad k = 1, \dots, d \end{aligned}$$

for some $P_{A,A_2,K,U,S,X,Y_1,Y_2} \in \mathcal{P}$.

Previous results

Main results

Inner bound Properties of \mathcal{R}_i Proof technique **Outer bound**

Properties of \mathcal{R}_{o} Informed stronger use

Summary & futur work

Main results

Outer bound

 \mathcal{R}_{o} - all (R_{1}, R_{2}, λ) such that

$$\begin{aligned} R_2 &\leq I(K, A_2; Y_2) - I(K; A, S|A_2) \\ R_1 &\leq I(U, A; Y_1|K) - I(U; S|K, A_2, A) \\ R_1 + R_2 &\leq I(U, K, A; Y_1) - I(U, K; S|A) \\ \mathsf{E}\left[\Lambda_k(A, X)\right] &\leq \lambda_k, \quad k = 1, \dots, d \end{aligned}$$

for some $P_{A,A_2,K,U,S,X,Y_1,Y_2} \in \mathcal{P}$.

Theorem

For any degraded BC with action-dependent non-causal SI

$$\mathcal{C}_{\mathsf{nc}} \subseteq \mathcal{R}_{\mathsf{o}}$$

Previous results

Main results

Inner bound Properties of \mathcal{R}_i Proof technique Outer bound **Properties of \mathcal{R}_0**

Summary & future work

Main results

Properties of \mathcal{R}_o

 \mathcal{R}_{o} - all (R_{1}, R_{2}, λ) such that

$$\begin{aligned} R_2 &\leq I(K, A_2; Y_2) - I(K; A, S|A_2) \\ R_1 &\leq I(U, A; Y_1|K) - I(U; S|K, A_2, A) \\ R_1 + R_2 &\leq I(U, K, A; Y_1) - I(U, K; S|A) \\ & \Xi[\Lambda_k(A, X)] &\leq \lambda_k, \quad k = 1, \dots, d \end{aligned}$$

for some $P_{A,A_2,K,U,S,X,Y_1,Y_2} \in \mathcal{P}$.

Previous results

Main results

Inner bound Properties of \mathcal{R}_i Proof technique Outer bound **Properties of \mathcal{R}_o**

Summary & future work

Main results

Properties of \mathcal{R}_o

 \mathcal{R}_{o} - all $(\mathcal{R}_1, \mathcal{R}_2, \lambda)$ such that

$$\begin{aligned} R_2 &\leq I(K, A_2; Y_2) - I(K; A, S|A_2) \\ R_1 &\leq I(U, A; Y_1|K) - I(U; S|K, A_2, A) \\ R_1 + R_2 &\leq I(U, K, A; Y_1) - I(U, K; S|A) \\ \mathsf{E}\left[\Lambda_k(A, X)\right] &\leq \lambda_k, \quad k = 1, \dots, d \end{aligned}$$

for some $P_{A,A_2,K,U,S,X,Y_1,Y_2} \in \mathcal{P}$.

Convex

Previous results

Main results

Inner bound Properties of R_i Proof technique Outer bound **Properties of R_o** Informed stronger (

Summary & future work

Main results

Properties of \mathcal{R}_{o}

 \mathcal{R}_{o} - all $(\mathcal{R}_1, \mathcal{R}_2, \lambda)$ such that

$$\begin{aligned} R_2 &\leq I(K, A_2; Y_2) - I(K; A, S|A_2) \\ R_1 &\leq I(U, A; Y_1|K) - I(U; S|K, A_2, A) \\ R_1 + R_2 &\leq I(U, K, A; Y_1) - I(U, K; S|A) \\ \mathsf{E}\left[\Lambda_k(A, X)\right] &\leq \lambda_k, \quad k = 1, \dots, d \end{aligned}$$

for some $P_{A,A_2,K,U,S,X,Y_1,Y_2} \in \mathcal{P}$.

Convex

Bounds on alphabets

Main results

Informed stronger decoder

- Even without actions, the state-dependent degraded BC with non-causal SI is still an open problem.
- ► Solved for the case where the stronger user is informed.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

-

Problem formulation

Previous results

Main results

Inner bound Properties of \mathcal{R}_i Proof technique Outer bound Properties of \mathcal{R}_o Informed stronger user

Summary & future work

Main results

Informed stronger decoder

- Even without actions, the state-dependent degraded BC with non-causal SI is still an open problem.
- Solved for the case where the stronger user is informed.
- For the action-dependent case, we need to restrict the class of costs Λ(A, X).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

Problem formulation

Previous results

Main results

Inner bound Properties of \mathcal{R}_i Proof technique Outer bound Properties of \mathcal{R}_o Informed stronger user

Summary & future work

Previous results

Main results

Inner bound Properties of \mathcal{R}_i Proof technique Outer bound Properties of \mathcal{R}_o Informed stronger user

Summary & fu work

Main results

Informed stronger user

Separated cost functions Λ^{sep}:

Each of the components of Λ depends either only on the actions or only on the channel input:

$$\begin{split} \Lambda^{\text{sep}}_{k'}(A^n, X^n) &= \Lambda^{\text{sep}}_{k'}(A^n), \quad 1 \leq k' \leq d', \\ \Lambda^{\text{sep}}_{k}(A^n, X^n) &= \Lambda^{\text{sep}}_{k}(X^n), \quad d' + 1 \leq k \leq d, \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

for some $0 \leq d' \leq d$.

Main results

Informed stronge user

Previous results

Main results

Inner bound Properties of \mathcal{R}_i Proof technique Outer bound Properties of \mathcal{R}_o Informed stronger user

Summary & future work

 $\mathcal{R}_{\sf nc}$ - all $({\it R}_1, {\it R}_2, \lambda)$ such that

$$\begin{split} R_2 &\leq I(K, A_2; Y_2) - I(K; S|A_2) \\ R_1 &\leq I(A; S|A_2) + I(X; Y_1|S, K, A_2) \\ & \mathsf{E} \left[\Lambda_k^{\mathsf{sep}}(A, X) \right] \leq \lambda_k, \quad k = 1, 2, \dots, d \end{split}$$

for some

$$P_{A,A_2}P_{S|A}P_{K|A,A_2,S}P_{X|K,A_2,S}P_{Y_1,Y_2|S,X}$$

Previous results

Main results

Inner bound Properties of \mathcal{R}_i Proof technique Outer bound Properties of \mathcal{R}_o Informed stronger user

Summary & future work

Main results

Informed stronger user

$$\begin{aligned} R_2 &\leq I(K, A_2; Y_2) - I(K; S|A_2) \\ R_1 &\leq I(A; S|A_2) + I(X; Y_1|S, K, A_2) \\ & \quad \mathsf{E} \left[\Lambda_k^{\mathsf{sep}}(A, X) \right] \leq \lambda_k, \quad k = 1, 2, \dots, d \end{aligned}$$

$$P_{A,A_2}P_{S|A}P_{K|A,A_2,S}P_{X|K,A_2,S}P_{Y_1,Y_2|S,X}$$

Theorem

For any DBC with action-dependent non-causal SI, informed stronger user, and separated cost functions

$$\mathcal{C}_{\mathsf{nc}} = \mathcal{R}_{\mathsf{nc}}$$

Previous results

Main results

Inner bound Properties of \mathcal{R}_i Proof technique Outer bound Properties of \mathcal{R}_o Informed stronger user

Summary & future work

Main results

Informed stronger user

$$\begin{split} R_2 &\leq I(K, A_2; Y_2) - I(K; S|A_2) \\ R_1 &\leq I(A; S|A_2) + I(X; Y_1|S, K, A_2) \\ & \quad \mathsf{E} \left[\Lambda_k^{\mathsf{sep}}(A, X) \right] \leq \lambda_k, \quad k = 1, 2, \dots, d \end{split}$$

 $P_{A,A_2}P_{S|A}P_{K|A,A_2,S}P_{X|K,A_2,S}P_{Y_1,Y_2|S,X}$

Previous results

Main results

Inner bound Properties of \mathcal{R}_i Proof technique Outer bound Properties of \mathcal{R}_o Informed stronger user

Summary & future work

Main results

Informed stronger user

$$\begin{aligned} R_2 &\leq I(K, A_2; Y_2) - I(K; S|A_2) \\ R_1 &\leq I(A; S|A_2) + I(X; Y_1|S, K, A_2) \\ & \quad \mathsf{E} \left[\Lambda_k^{\mathsf{sep}}(A, X) \right] \leq \lambda_k, \quad k = 1, 2, \dots, d \end{aligned}$$

$$P_{A,A_2}P_{S|A}P_{K|A,A_2,S}P_{X|K,A_2,S}P_{Y_1,Y_2|S,X}$$

• User 2: As in single user channel, with actions A_2 .

Previous results

Main results

Inner bound Properties of \mathcal{R}_i Proof technique Outer bound Properties of \mathcal{R}_o Informed stronger user

Summary & future work

Main results

Informed stronger user

$$\begin{aligned} R_2 &\leq I(K, A_2; Y_2) - I(K; S|A_2) \\ R_1 &\leq I(A; S|A_2) + I(X; Y_1|S, K, A_2) \\ & \quad \mathsf{E} \left[\Lambda_k^{\mathsf{sep}}(A, X) \right] \leq \lambda_k, \quad k = 1, 2, \dots, d \end{aligned}$$

$$P_{A,A_2}P_{S|A}P_{K|A,A_2,S}P_{X|K,A_2,S}P_{Y_1,Y_2|S,X}$$

- User 2: As in single user channel, with actions A_2 .
- User 1: coding in two separate stages:
 - Via the actions A directly to S
 - Via X to Y_1 , conditioned on (S, K, A_2) .

Previous results

Main results

Inner bound Properties of \mathcal{R}_i Proof technique Outer bound Properties of \mathcal{R}_o Informed stronger user

Summary & future work

Main results

Informed stronger user

$$\begin{aligned} R_2 &\leq I(K, A_2; Y_2) - I(K; S|A_2) \\ R_1 &\leq I(A; S|A_2) + I(X; Y_1|S, K, A_2) \\ & \quad \mathsf{E} \left[\Lambda_k^{\mathsf{sep}}(A, X) \right] \leq \lambda_k, \quad k = 1, 2, \dots, d \end{aligned}$$

$$P_{A,A_2}P_{S|A}P_{K|A,A_2,S}P_{X|K,A_2,S}P_{Y_1,Y_2|S,X}$$

- User 2: As in single user channel, with actions A_2 .
- User 1: coding in two separate stages:
 - Via the actions A directly to S
 - Via X to Y_1 , conditioned on (S, K, A_2) .
- Conditioned on (S, K, A₂), X indep of A.

Previous results

Main results

Inner bound Properties of \mathcal{R}_i Proof technique Outer bound Properties of \mathcal{R}_o Informed stronger user

Main results

Informed stronger user

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Converse:

Previous results

Main results

Inner bound Properties of \mathcal{R}_i Proof technique Outer bound Properties of \mathcal{R}_o Informed stronger user

Summary & future work

Main results

Informed stronger user

Converse:

▶ User 2 - as in single user.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Previous results

Main results

Inner bound Properties of \mathcal{R}_i Proof technique Outer bound Properties of \mathcal{R}_o Informed stronger user

Summary & future work

Main results

Informed stronger user

Converse:

- ► User 2 as in single user.
- User 1 can get a bound of the form

$$nR_1 - n\epsilon_n \leq \sum_{i=1}^n I(A_i; S_i | A_{2,i}) + I(X_i; Y_{1,i} | S_i, K_i, A_{2,i})$$

Previous results

Main results

Inner bound Properties of \mathcal{R}_i Proof technique Outer bound Properties of \mathcal{R}_o Informed stronger user

Summary & future work

Main results

Informed stronger user

Converse:

- ► User 2 as in single user.
- ► User 1 can get a bound of the form

$$nR_1 - n\epsilon_n \leq \sum_{i=1}^n I(A_i; S_i | A_{2,i}) + I(X_i; Y_{1,i} | S_i, K_i, A_{2,i})$$

For a general code, $X_i - (S_i, K_i, A_{2,i}) - A_i$ does not hold

Previous results

Main results

Inner bound Properties of \mathcal{R}_i Proof technique Outer bound Properties of \mathcal{R}_o Informed stronger user

Summary & future work

Main results

Informed stronger user

Converse:

- ► User 2 as in single user.
- ► User 1 can get a bound of the form

$$nR_1 - n\epsilon_n \leq \sum_{i=1}^n I(A_i; S_i | A_{2,i}) + I(X_i; Y_{1,i} | S_i, K_i, A_{2,i})$$

- For a general code, $X_i (S_i, K_i, A_{2,i}) A_i$ does not hold
- If X and A do not appear together, we do not have to preserve their joint distribution

Previous results

Main results

Inner bound Properties of \mathcal{R}_i Proof technique Outer bound Properties of \mathcal{R}_o Informed stronger user

Summary & future work

Main results

Informed stronger user

Converse:

- ► User 2 as in single user.
- ► User 1 can get a bound of the form

$$nR_1 - n\epsilon_n \leq \sum_{i=1}^n I(A_i; S_i | A_{2,i}) + I(X_i; Y_{1,i} | S_i, K_i, A_{2,i})$$

- For a general code, $X_i (S_i, K_i, A_{2,i}) A_i$ does not hold
- If X and A do not appear together, we do not have to preserve their joint distribution

$$\Longrightarrow \Lambda^{sep}$$

Summary

Problem formulation

Previous results

Main results

Summary & future work

 Developed inner and outer bounds on the capacity region of the degraded BC with action-dependent states and non-causal SI.

- The case of informed stronger user is solved.
- Future work: General (non-informed) setting. Good examples.